Docality.com Logo
 
Dr. Richard  Oh  Md image

Dr. Richard Oh Md

12605 E 16Th Ave
Aurora CO 80045
720 480-0000
Medical School: Other - Unknown
Accepts Medicare: No
Participates In eRX: No
Participates In PQRS: No
Participates In EHR: No
License #: 46750
NPI: 1841415742
Taxonomy Codes:
2085R0202X

Request Appointment Information

Awards & Recognitions

About Us

Practice Philosophy

Conditions

Medical Malpractice Cases

None Found

Medical Board Sanctions

None Found

Referrals

None Found

Publications

Forward operation of adenine nucleotide translocase during F0F1-ATPase reversal: critical role of matrix substrate-level phosphorylation. - FASEB journal : official publication of the Federation of American Societies for Experimental Biology
In pathological conditions, F(0)F(1)-ATPase hydrolyzes ATP in an attempt to maintain mitochondrial membrane potential. Using thermodynamic assumptions and computer modeling, we established that mitochondrial membrane potential can be more negative than the reversal potential of the adenine nucleotide translocase (ANT) but more positive than that of the F(0)F(1)-ATPase. Experiments on isolated mitochondria demonstrated that, when the electron transport chain is compromised, the F(0)F(1)-ATPase reverses, and the membrane potential is maintained as long as matrix substrate-level phosphorylation is functional, without a concomitant reversal of the ANT. Consistently, no cytosolic ATP consumption was observed using plasmalemmal K(ATP) channels as cytosolic ATP biosensors in cultured neurons, in which their in situ mitochondria were compromised by respiratory chain inhibitors. This finding was further corroborated by quantitative measurements of mitochondrial membrane potential, oxygen consumption, and extracellular acidification rates, indicating nonreversal of ANT of compromised in situ neuronal and astrocytic mitochondria; and by bioluminescence ATP measurements in COS-7 cells transfected with cytosolic- or nuclear-targeted luciferases and treated with mitochondrial respiratory chain inhibitors in the presence of glycolytic plus mitochondrial vs. only mitochondrial substrates. Our findings imply the possibility of a rescue mechanism that is protecting against cytosolic/nuclear ATP depletion under pathological conditions involving impaired respiration. This mechanism comes into play when mitochondria respire on substrates that support matrix substrate-level phosphorylation.
Quantitative microplate-based respirometry with correction for oxygen diffusion. - Analytical chemistry
Respirometry using modified cell culture microplates offers an increase in throughput and a decrease in biological material required for each assay. Plate based respirometers are susceptible to a range of diffusion phenomena; as O(2) is consumed by the specimen, atmospheric O(2) leaks into the measurement volume. Oxygen also dissolves in and diffuses passively through the polystyrene commonly used as a microplate material. Consequently the walls of such respirometer chambers are not just permeable to O(2) but also store substantial amounts of gas. O(2) flux between the walls and the measurement volume biases the measured oxygen consumption rate depending on the actual [O(2)] gradient. We describe a compartment model-based correction algorithm to deconvolute the biological oxygen consumption rate from the measured [O(2)]. We optimize the algorithm to work with the Seahorse XF24 extracellular flux analyzer. The correction algorithm is biologically validated using mouse cortical synaptosomes and liver mitochondria attached to XF24 V7 cell culture microplates, and by comparison to classical Clark electrode oxygraph measurements. The algorithm increases the useful range of oxygen consumption rates, the temporal resolution, and durations of measurements. The algorithm is presented in a general format and is therefore applicable to other respirometer systems.
Experimental assessment of bioenergetic differences caused by the common European mitochondrial DNA haplogroups H and T. - Gene
Studies of both survival after sepsis and sperm motility in human populations have shown significant associations with common European mitochondrial DNA haplogroups, and have led to proposals that mitochondria bearing haplogroup H have different bioenergetic capacities than those bearing haplogroup T. However, the validity of such associations assumes that there are no non-random influences of nuclear genes or other factors. Here, we removed the effect of any differences in nuclear genes by constructing transmitochondrial cybrids harbouring mitochondria with either haplogroup H or haplogroup T in cultured A549 human lung carcinoma cells with identical nuclear backgrounds. We compared the bioenergetic capacities and coupling efficiencies of mitochondria isolated from these cells, and of mitochondria retained within the cells, as a critical experimental test of the hypothesis that these haplogroups affect mitochondrial bioenergetics. We found that there were no functionally-important bioenergetic differences between mitochondria bearing these haplogroups, using either isolated mitochondria or mitochondria within cells.

Map & Directions

12605 E 16Th Ave Aurora, CO 80045
View Directions In Google Maps

Nearby Doctors

12605 E 16Th Ave
Aurora, CO 80045
720 480-0000
12605 E 16Th Ave
Aurora, CO 80045
720 480-0000
12605 E 16Th Ave
Aurora, CO 80045
720 480-0000
13123 E 16Th Ave
Aurora, CO 80045
720 771-1234
12605 E 16Th Ave
Aurora, CO 80045
720 480-0000
13123 E 16Th Ave
Aurora, CO 80045
720 771-1234
12605 E 16Th Ave
Aurora, CO 80045
720 480-0000
12605 E 16Th Ave
Aurora, CO 80045
720 480-0000
13123 E 16Th Ave
Aurora, CO 80045
720 771-1234