Dr. Tarique  Perera  Md image

Dr. Tarique Perera Md

84 Hospital Ave
Danbury CT 06810
203 920-0400
Medical School: Harvard Medical School - 1997
Accepts Medicare: Yes
Participates In eRX: Yes
Participates In PQRS: No
Participates In EHR: No
License #: 039232
NPI: 1730195751
Taxonomy Codes:

Request Appointment Information

Awards & Recognitions

About Us

Practice Philosophy


Dr. Tarique Perera is associated with these group practices

Procedure Pricing

HCPCS Code Description Average Price Average Price
Allowed By Medicare
HCPCS Code:90801 Description:Psy dx interview Average Price:$250.00 Average Price Allowed
By Medicare:
HCPCS Code:90862 Description:Medication management Average Price:$116.84 Average Price Allowed
By Medicare:

Medical Malpractice Cases

None Found

Medical Board Sanctions

None Found


None Found


Seizure expression during electroconvulsive therapy: relationships with clinical outcome and cognitive side effects. - Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
Since electroconvulsive therapy (ECT) can result in generalized seizures that lack efficacy, physiological markers of treatment adequacy are needed. Specific electroencephalographic (EEG) features differentiate seizures produced with barely suprathreshold right unilateral (RUL) ECT, an ineffective treatment, from effective forms of ECT. This study determined whether EEG features are sensitive to treatment condition using a broad dosing range for RUL ECT, as well as predictive of clinical and cognitive outcomes. Quantitative EEG measures and observer ratings were compared in predictive power. From a larger study, 54 in-patients with major depression were randomized to low (1.5 x seizure threshold (ST)), moderate (2.5 x ST), or high-dose (6 x ST) RUL ECT, or high-dose (2.5 x ST) bilateral (BL) ECT. High dosage RUL and BL ECT were comparable in efficacy, and superior to low and moderate dosage RUL ECT. In the slow frequency bands (delta), BL ECT resulted in greater ictal power, ictal coherence, and postictal suppression than each RUL ECT condition, but the EEG measures failed to discriminate the RUL ECT groups. EEG measures were modestly associated with clinical outcome, with greater ictal power, delta coherence, and postictal suppression positive predictors. None of the EEG measures were associated with cognitive outcomes. Inability to distinguish forms of RUL ECT differing markedly in dosage and efficacy suggests that EEG measures have limited potential as markers of treatment adequacy. Rather than assaying treatment adequacy, the EEG features associated with efficacy may reflect individual differences in the strength of inhibitory processes that terminate the seizure, and can help isolate the biological variability that predisposes to positive or negative clinical response to ECT.
Elevated cerebrospinal fluid 5-hydroxyindoleacetic acid in macaques following early life stress and inverse association with hippocampal volume: preliminary implications for serotonin-related function in mood and anxiety disorders. - Frontiers in behavioral neuroscience
Early life stress (ELS) is cited as a risk for mood and anxiety disorders, potentially through altered serotonin neurotransmission. We examined the effects of ELS, utilizing the variable foraging demand (VFD) macaque model, on adolescent monoamine metabolites. We sought to replicate an increase in cerebrospinal fluid (CSF) 5-hydroxyindoleacetic acid (5-HIAA) observed in two previous VFD cohorts. We hypothesized that elevated cisternal 5-HIAA was associated with reduced neurotrophic effects, conceivably due to excessive negative feedback at somatodendritic 5-HT1A autoreceptors. A putatively decreased serotonin neurotransmission would be reflected by reductions in hippocampal volume and white matter (WM) fractional anisotropy (FA).When infants were 2-6 months of age, bonnet macaque mothers were exposed to VFD. We employed cisternal CSF taps to measure monoamine metabolites in VFD (N = 22) and non-VFD (N = 14) offspring (mean age = 2.61 years). Metabolites were correlated with hippocampal volume obtained by MRI and WM FA by diffusion tensor imaging in young adulthood in 17 males [10 VFD (mean age = 4.57 years)].VFD subjects exhibited increased CSF 5-HIAA compared to non-VFD controls. An inverse correlation between right hippocampal volume and 5-HIAA was noted in VFD- but not controls. CSF HVA and MHPG correlated inversely with hippocampal volume only in VFD. CSF 5-HIAA correlated inversely with FA of the WM tracts of the anterior limb of the internal capsule (ALIC) only in VFD.Elevated cisternal 5-HIAA in VFD may reflect increased dorsal raphe serotonin, potentially inducing excessive autoreceptor activation, inducing a putative serotonin deficit in terminal fields. Resultant reductions in neurotrophic activity are reflected by smaller right hippocampal volume. Convergent evidence of reduced neurotrophic activity in association with high CSF 5-HIAA in VFD was reflected by reduced FA of the ALIC.
Glucagon-like peptide-1 as predictor of body mass index and dentate gyrus neurogenesis: neuroplasticity and the metabolic milieu. - Neural plasticity
Glucagon-like peptide-1 (GLP-1) regulates carbohydrate metabolism and promotes neurogenesis. We reported an inverse correlation between adult body mass and neurogenesis in nonhuman primates. Here we examine relationships between physiological levels of the neurotrophic incretin, plasma GLP-1 (pGLP-1), and body mass index (BMI) in adolescence to adult neurogenesis and associations with a diabesity diathesis and infant stress. Morphometry, fasting pGLP-1, insulin resistance, and lipid profiles were measured in early adolescence in 10 stressed and 4 unstressed male bonnet macaques. As adults, dentate gyrus neurogenesis was assessed by doublecortin staining. High pGLP-1, low body weight, and low central adiposity, yet peripheral insulin resistance and high plasma lipids, during adolescence were associated with relatively high adult neurogenesis rates. High pGLP-1 also predicted low body weight with, paradoxically, insulin resistance and high plasma lipids. No rearing effects for neurogenesis rates were observed. We replicated an inverse relationship between BMI and neurogenesis. Adolescent pGLP-1 directly predicted adult neurogenesis. Two divergent processes relevant to human diabesity emerge-high BMI, low pGLP-1, and low neurogenesis and low BMI, high pGLP-1, high neurogenesis, insulin resistance, and lipid elevations. Diabesity markers putatively reflect high nutrient levels necessary for neurogenesis at the expense of peripheral tissues.
Early life stress and macaque amygdala hypertrophy: preliminary evidence for a role for the serotonin transporter gene. - Frontiers in behavioral neuroscience
Children exposed to early life stress (ELS) exhibit enlarged amygdala volume in comparison to controls. The primary goal of this study was to examine amygdala volumes in bonnet macaques subjected to maternal variable foraging demand (VFD) rearing, a well-established model of ELS. Preliminary analyses examined the interaction of ELS and the serotonin transporter gene on amygdala volume. Secondary analyses were conducted to examine the association between amygdala volume and other stress-related variables previously found to distinguish VFD and non-VFD reared animals.Twelve VFD-reared and nine normally reared monkeys completed MRI scans on a 3T system (mean age = 5.2 years).Left amygdala volume was larger in VFD vs. control macaques. Larger amygdala volume was associated with: "high" cerebrospinal fluid concentrations of corticotropin releasing-factor (CRF) determined when the animals were in adolescence (mean age = 2.7 years); reduced fractional anisotropy (FA) of the anterior limb of the internal capsule (ALIC) during young adulthood (mean age = 5.2 years) and timid anxiety-like responses to an intruder during full adulthood (mean age = 8.4 years). Right amygdala volume varied inversely with left hippocampal neurogenesis assessed in late adulthood (mean age = 8.7 years). Exploratory analyses also showed a gene-by-environment effect, with VFD-reared macaques with a single short allele of the serotonin transporter gene exhibiting larger amygdala volume compared to VFD-reared subjects with only the long allele and normally reared controls.These data suggest that the left amygdala exhibits hypertrophy after ELS, particularly in association with the serotonin transporter gene, and that amygdala volume variation occurs in concert with other key stress-related behavioral and neurobiological parameters observed across the lifecycle. Future research is required to understand the mechanisms underlying these diverse and persistent changes associated with ELS and amygdala volume.
Complement expression in the retina is not influenced by short-term pressure elevation. - Molecular vision
To determine whether short-term pressure elevation affects complement gene expression in the retina in vitro and in vivo.Muller cell (TR-MUL5) cultures and organotypic retinal cultures from adult mice and monkeys were subjected to either 24-h or 72-h of pressure at 0, 15, 30, and 45 mmHg above ambient. C57BL/6 mice were subjected to microbead-induced intraocular pressure (IOP) elevation for 7 days. RNA and protein were extracted and used for analysis of expression levels of complement component genes and complement component 1, q subcomponent (C1q) and complement factor H (CFH) immunoblotting.mRNA levels of complement genes and C1q protein levels in Muller cell cultures remained the same for all pressure levels after exposure for either 24 or 72 h. In primate and murine organotypic cultures, pressure elevation did not produce changes in complement gene expression or C1q and CFH protein levels at either the 24-h or 72-h time points. Pressure-related glial fibrillary acidic protein (GFAP) mRNA expression changes were detected in primate retinal organotypic cultures (analysis of variance [ANOVA]; p<0.05). mRNA expression of several other genes changed as a result of time in culture. Eyes subjected to microbead-induced IOP elevation had no differences in mRNA expression of complement genes and C1q protein levels (ANOVA; p>0.05 for both) with contralateral control and naïve control eyes.Short-term elevation of pressure in vitro as well as short-term (1 week) IOP elevation in vivo does not seem to dramatically alter complement system gene expression in the retina. Prolonged expression to elevated pressure may be necessary to affect the complement system expression.
A feasibility study of a new method for electrically producing seizures in man: focal electrically administered seizure therapy [FEAST]. - Brain stimulation
Electroconvulsive therapy (ECT) remains the most effective acute treatment for severe major depression, but with significant risk of adverse cognitive effects. Unidirectional electrical stimulation with a novel electrode placement and geometry (Focal Electrically Administered Seizure Therapy (FEAST)) has been proposed as a means to initiate seizures in prefrontal cortex prior to secondary generalization. As such, it may have fewer cognitive side effects than traditional ECT. We report on its first human clinical application.Seventeen unmedicated depressed adults (5 men; 3 bipolar disorder; age 53 ± 16 years) were recruited after being referred for ECT. Open-label FEAST was administered with a modified spECTrum 5000Q device and a traditional ECT dosing regimen until patients clinically responded. Clinical and cognitive assessments were obtained at baseline, and end of course. Time to orientation recovery, a predictor of long-term amnestic effects, was assessed at each treatment. Nonresponders to FEAST were transitioned to conventional ECT.One patient withdrew from the study after a single titration session. After the course of FEAST (median 10 sessions), there was a 46.1 ± 35.5% improvement in Hamilton Rating Scale for Depression (HRSD24) scores compared to baseline (33.1 ± 6.8, 16.8 ± 10.9; P < 0.0001). Eight of 16 patients met response criteria (50% decrease in HRSD24) and 5/16 met remission criteria (HRSD24 ≤ 10). Patients achieved full re-orientation (4 of 5 items) in 5.5 ± 6.4 min (median = 3.6), timed from when their eyes first opened after treatment.In this feasibility study, FEAST produced clinically meaningful antidepressant improvement, with relatively short time to reorientation. Our preliminary work first in primates and now depressed adults demonstrates that FEAST is feasible, safe, well-tolerated and, if efficacy can be optimized, has potential to replace traditional ECT.Copyright © 2013 Elsevier Inc. All rights reserved.
Role of hippocampal neurogenesis in mnemonic segregation: implications for human mood disorders. - The world journal of biological psychiatry : the official journal of the World Federation of Societies of Biological Psychiatry
Although hippocampal neurogenesis has been implicated in mood disorders, the precise role new neurons play in mood regulation is not fully elucidated. Here we examine whether neurogenesis improves mood by facilitating segregation of novel experiences that conflict with older maladaptive memories.Study 1: Four groups (N = 9 each) of adult male rats (exposed to stress or control conditions plus antidepressant or placebo) underwent active training on the place-avoidance task (PAT) on week 0; tested on recalling the "Initial PAT" on weeks 4 and 8; learning a subtly "Altered PAT" on week 8; and euthanazed on week 9. Study-2: Two groups (N = 12 each) rats tested either on the Initial-PAT or Altered-PAT 3 days post-training and immediately euthanized.Stressed subjects treated with placebo were slower in learning the week 8 Altered Task and had lower neurogenesis rates than non-stressed animals and Stressed subjects given drug (Study 1). Synaptic activation of mature hippocampal neurons inversely correlated with Altered-PAT performance and with neurogenesis rates (Study 2).Increasing neurogenesis enhances acquisition of novel experiences possibly by suppressing activation of mature hippocampal neurons that mediate established, conflicting memories. Therefore, antidepressants may improve mood by stimulating new hippocampal neurogenesis that facilitate detection of positive experiences while suppressing interference from recurring depressogenic thought patterns.
Necessity of hippocampal neurogenesis for the therapeutic action of antidepressants in adult nonhuman primates. - PloS one
Rodent studies show that neurogenesis is necessary for mediating the salutary effects of antidepressants. Nonhuman primate (NHP) studies may bridge important rodent findings to the clinical realm since NHP-depression shares significant homology with human depression and kinetics of primate neurogenesis differ from those in rodents. After demonstrating that antidepressants can stimulate neurogenesis in NHPs, our present study examines whether neurogenesis is required for antidepressant efficacy in NHPs. MATERIALS/METHODOLOGY: Adult female bonnets were randomized to three social pens (N = 6 each). Pen-1 subjects were exposed to control-conditions for 15 weeks with half receiving the antidepressant fluoxetine and the rest receiving saline-placebo. Pen-2 subjects were exposed to 15 weeks of separation-stress with half receiving fluoxetine and half receiving placebo. Pen-3 subjects 2 weeks of irradiation (N = 4) or sham-irradiation (N = 2) and then exposed to 15 weeks of stress and fluoxetine. Dependent measures were weekly behavioral observations and postmortem neurogenesis levels.Exposing NHPs to repeated separation stress resulted in depression-like behaviors (anhedonia and subordinance) accompanied by reduced hippocampal neurogenesis. Treatment with fluoxetine stimulated neurogenesis and prevented the emergence of depression-like behaviors. Ablation of neurogenesis with irradiation abolished the therapeutic effects of fluoxetine. Non-stressed controls had normative behaviors although the fluoxetine-treated controls had higher neurogenesis rates. Across all groups, depression-like behaviors were associated with decreased rates of neurogenesis but this inverse correlation was only significant for new neurons in the anterior dentate gyrus that were at the threshold of completing maturation.We provide evidence that induction of neurogenesis is integral to the therapeutic effects of fluoxetine in NHPs. Given the similarity between monkeys and humans, hippocampal neurogenesis likely plays a similar role in the treatment of clinical depression. Future studies will examine several outstanding questions such as whether neuro-suppression is sufficient for producing depression and whether therapeutic neuroplastic effects of fluoxetine are specific to antidepressants.
Early-life stress and neurometabolites of the hippocampus. - Brain research
We tested the hypothesis that early life stress would persistently compromise neuronal viability of the hippocampus of the grown nonhuman primate. Neuronal viability was assessed through ascertainment of N-acetyl aspartate (NAA)-an amino acid considered reflective of neuronal density/functional integrity-using in vivo proton magnetic resonance spectroscopic imaging (MRSI). The subjects reported herein represent a re-analysis of a sample of nineteen adult male bonnet macaques that had been reared in infancy under induced stress by maternal variable foraging demand (VFD) (N=10) or control rearing conditions (N=9). The MRSI spectral readings were recorded using a GE 1.5 Tesla machine under anesthesia. Relative NAA values were derived using NAA as numerator and both choline (Cho) or creatine (Cr) as denominators. Left medial temporal lobe (MTL) NAA/Cho but not NAA/Cr was decreased in VFD subjects versus controls. An MTL NAA/Cho ratio deficit remained significant when controlling for multiple confounding variables. Regression analyses suggested that the NAA/Choline finding was due to independently low left NAA and high left choline. Right MTL showed no rearing effects for NAA, but right NAA was positively related to body mass, irrespective of denominator. The current data indicate that decreased left MTL NAA/Cho may reflect low neuronal viability of the hippocampus following early life stress in VFD-reared versus normally-reared subjects. Given the importance of the hippocampus in stress-mediated toxicity, validation of these data using absolute quantification is suggested and correlative neurohistological studies of hippocampus are warranted.Copyright © 2010 Elsevier B.V. All rights reserved.
Cognitive role of neurogenesis in depression and antidepressant treatment. - The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry
The discovery of newborn neurons in the adult brain has generated enormous interest over the past decade. Although this process is well documented in the hippocampus and olfactory bulb, the possibility of neuron formation in other brain regions is under vigorous debate. Neurogenesis within the adult hippocampus is suppressed by factors that predispose to major depression and stimulated by antidepressant interventions. This pattern has generated the hypothesis that impaired neurogenesis is pathoetiological in depression and stimulation of newborn neurons essential for effective antidepressant action. This review critically evaluates the evidence in support of and in conflict with this theory. The literature is divided into three areas: neuronal maturation, factors that influence neurogenesis rates, and function of newborn neurons. Unique elements in each of these areas allow for the refinement of the hypothesis. Newborn hippocampal neurons appear to be necessary for detecting subtle environmental changes and coupling emotions to external context. Thus speculatively, stress-induced suppression of neurogenesis would uncouple emotions from external context leading to a negative mood state. Persistence of negative mood beyond the duration of the initial stressor can be defined as major depression. Antidepressant-induced neurogenesis therefore would restore coupling of mood with environment, leading to the resolution of depression. This conceptual framework is provisional and merits evaluation in further experimentation. Critically, manipulation of newborn hippocampal neurons may offer a portal of entry for more effective antidepressant treatment strategies.

Map & Directions

84 Hospital Ave Danbury, CT 06810
View Directions In Google Maps

Nearby Doctors

54 Main St Suite F
Danbury, CT 06810
203 900-0111
205 Main St
Danbury, CT 06810
203 486-6471
109 Newtown Rd.
Danbury, CT 06810
203 079-9840
24 Hospital Ave
Danbury, CT 06810
203 977-7100
24 Hospital Ave
Danbury, CT 06810
203 977-7150
24 Hospital Ave
Danbury, CT 06810
203 977-7118
24 Hospital Ave
Danbury, CT 06810
203 396-6810
24 Hospital Ave
Danbury, CT 06810
203 977-7118
24 Hospital Ave
Danbury, CT 06810
203 397-7000
24 Hospital Ave
Danbury, CT 06810
203 977-7413