Docality.com Logo
 
Dr. Warren  Patch  Dc image

Dr. Warren Patch Dc

1952 Sunset Cliffs Blvd
San Diego CA 92107
760 367-7999
Medical School: Other - Unknown
Accepts Medicare: No
Participates In eRX: No
Participates In PQRS: No
Participates In EHR: No
License #: DC14717
NPI: 1639249030
Taxonomy Codes:
111N00000X

Request Appointment Information

Awards & Recognitions

About Us

Practice Philosophy

Conditions

Medical Malpractice Cases

None Found

Medical Board Sanctions

None Found

Referrals

None Found

Publications

Neurotensin enhances glutamatergic EPSCs in VTA neurons by acting on different neurotensin receptors. - Peptides
Neurotensin (NT) is an endogenous neuropeptide that modulates dopamine and glutamate neurotransmission in several limbic regions innervated by neurons located in the ventral tegmental area (VTA). While several studies showed that NT exerted a direct modulation on VTA dopamine neurons less is known about its role in the modulation of glutamatergic neurotransmission in this region. The present study was aimed at characterising the effects of NT on glutamate-mediated responses in different populations of VTA neurons. Using whole cell patch clamp recording technique in horizontal rat brain slices, we measured the amplitude of glutamatergic excitatory post-synaptic currents (EPSCs) evoked by electrical stimulation of VTA afferents before and after application of different concentrations of NT1-13 or its C-terminal fragment, NT8-13. Neurons were classified as either Ih(+) or Ih(-) based on the presence or absence of a hyperpolarisation activated cationic current (Ih). We found that NT1-13 and NT8-13 produced comparable concentration dependent increase in the amplitude of EPSCs in both Ih(+) and Ih(-) neurons. In Ih(+) neurons, the enhancement effect of NT8-13 was blocked by both antagonists, while in Ih(-) neurons it was blocked by the NTS1/NTS2 antagonist, SR142948A, but not the preferred NTS1 antagonist, SR48692. In as much as Ih(-) neurons are non-dopaminergic neurons and Ih(+) neurons represent both dopamine and non-dopamine neurons, we can conclude that NT enhances glutamatergic mediated responses in dopamine, and in a subset of non-dopamine, neurons by acting respectively on NTS1 and an NT receptor other than NTS1.Copyright © 2015 Elsevier Inc. All rights reserved.
Rapid and slow chemical synaptic interactions of cholinergic projection neurons and GABAergic local interneurons in the insect antennal lobe. - The Journal of neuroscience : the official journal of the Society for Neuroscience
The antennal lobe (AL) of insects constitutes the first synaptic relay and processing center of olfactory information, received from olfactory sensory neurons located on the antennae. Complex synaptic connectivity between olfactory neurons of the AL ultimately determines the spatial and temporal tuning profile of (output) projection neurons to odors. Here we used paired whole-cell patch-clamp recordings in the cockroach Periplaneta americana to characterize synaptic interactions between cholinergic uniglomerular projection neurons (uPNs) and GABAergic local interneurons (LNs), both of which are key components of the insect olfactory system. We found rapid, strong excitatory synaptic connections between uPNs and LNs. This rapid excitatory transmission was blocked by the nicotinic acetylcholine receptor blocker mecamylamine. IPSPs, elicited by synaptic input from a presynaptic LN, were recorded in both uPNs and LNs. IPSPs were composed of both slow, sustained components and fast, transient components which were coincident with presynaptic action potentials. The fast IPSPs were blocked by the GABAA receptor chloride channel blocker picrotoxin, whereas the slow sustained IPSPs were blocked by the GABAB receptor blocker CGP-54626. This is the first study to directly show the predicted dual fast- and slow-inhibitory action of LNs, which was predicted to be key in shaping complex odor responses in the AL of insects. We also provide the first direct characterization of rapid postsynaptic potentials coincident with presynaptic spikes between olfactory processing neurons in the AL.Copyright © 2014 the authors 0270-6474/14/3413039-08$15.00/0.
A near-infrared fluorescent voltage-sensitive dye allows for moderate-throughput electrophysiological analyses of human induced pluripotent stem cell-derived cardiomyocytes. - American journal of physiology. Heart and circulatory physiology
Human induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM)-based assays are emerging as a promising tool for the in vitro preclinical screening of QT interval-prolonging side effects of drugs in development. A major impediment to the widespread use of human iPSC-CM assays is the low throughput of the currently available electrophysiological tools. To test the precision and applicability of the near-infrared fluorescent voltage-sensitive dye 1-(4-sulfanatobutyl)-4-{β[2-(di-n-butylamino)-6-naphthyl]butadienyl}quinolinium betaine (di-4-ANBDQBS) for moderate-throughput electrophysiological analyses, we compared simultaneous transmembrane voltage and optical action potential (AP) recordings in human iPSC-CM loaded with di-4-ANBDQBS. Optical AP recordings tracked transmembrane voltage with high precision, generating nearly identical values for AP duration (AP durations at 10%, 50%, and 90% repolarization). Human iPSC-CMs tolerated repeated laser exposure, with stable optical AP parameters recorded over a 30-min study period. Optical AP recordings appropriately tracked changes in repolarization induced by pharmacological manipulation. Finally, di-4-ANBDQBS allowed for moderate-throughput analyses, increasing throughput >10-fold over the traditional patch-clamp technique. We conclude that the voltage-sensitive dye di-4-ANBDQBS allows for high-precision optical AP measurements that markedly increase the throughput for electrophysiological characterization of human iPSC-CMs.Copyright © 2014 the American Physiological Society.
Dopamine preferentially inhibits NMDA receptor-mediated EPSCs by acting on presynaptic D1 receptors in nucleus accumbens during postnatal development. - PloS one
Nucleus accumbens (nAcb), a major site of action of drugs of abuse and dopamine (DA) signalling in MSNs (medium spiny neurons), is critically involved in mediating behavioural responses of drug addiction. Most studies have evaluated the effects of DA on MSN firing properties but thus far, the effects of DA on a cellular circuit involving glutamatergic afferents to the nAcb have remained rather elusive. In this study we attempted to characterize the effects of dopamine (DA) on evoked glutamatergic excitatory postsynaptic currents (EPSCs) in nAcb medium spiny (MS) neurons in 1 to 21 day-old rat pups. The EPSCs evoked by local nAcb stimuli displayed both AMPA/KA and NMDA receptor-mediated components. The addition of DA to the superfusing medium produced a marked decrease of both components of the EPSCs that did not change during the postnatal period studied. Pharmacologically isolated AMPA/KA receptor-mediated response was inhibited on average by 40% whereas the isolated NMDA receptor-mediated EPSC was decreased by 90%. The effect of DA on evoked EPSCs were mimicked by the D1-like receptor agonist SKF 38393 and antagonized by the D1-like receptor antagonist SCH 23390 whereas D2-like receptor agonist or antagonist respectively failed to mimic or to block the action of DA. DA did not change the membrane input conductance of MS neurons or the characteristics of EPSCs produced by the local administration of glutamate in the presence of tetrodotoxin. In contrast, DA altered the paired-pulse ratio of evoked EPSCs. The present results show that the activation D1-like dopaminergic receptors modulate glutamatergic neurotransmission by preferentially inhibiting NMDA receptor-mediated EPSC through presynaptic mechanisms.
Aminopiperidine sulfonamide Cav2.2 channel inhibitors for the treatment of chronic pain. - Journal of medicinal chemistry
The voltage-gated calcium channel Ca(v)2.2 (N-type calcium channel) is a critical regulator of synaptic transmission and has emerged as an attractive target for the treatment of chronic pain. We report here the discovery of sulfonamide-derived, state-dependent inhibitors of Ca(v)2.2. In particular, 19 is an inhibitor of Ca(v)2.2 that is selective over cardiac ion channels, with a good preclinical PK and biodistribution profile. This compound exhibits dose-dependent efficacy in preclinical models of inflammatory hyperalgesia and neuropathic allodynia and is devoid of ancillary cardiovascular or CNS pharmacology at the doses tested. Importantly, 19 exhibited no efficacy in Ca(v)2.2 gene-deleted mice. The discovery of metabolite 26 confounds further development of members of this aminopiperidine sulfonamide series. This discovery also suggests specific structural liabilities of this class of compounds that must be addressed.
Linking foraging decisions to residential yard bird composition. - PloS one
Urban bird communities have higher densities but lower diversity compared with wildlands. However, recent studies show that residential urban yards with native plantings have higher native bird diversity compared with yards with exotic vegetation. Here we tested whether landscape designs also affect bird foraging behavior. We estimated foraging decisions by measuring the giving-up densities (GUD; amount of food resources remaining when the final forager quits foraging on an artificial food patch, i.e seed trays) in residential yards in Phoenix, AZ, USA. We assessed how two yard designs (mesic: lush, exotic vegetation; xeric: drought-tolerant and native vegetation) differed in foraging costs. Further, we developed a statistical model to calculate GUDs for every species visiting the seed tray. Birds foraging in mesic yards depleted seed trays to a lower level (i.e. had lower GUDs) compared to birds foraging in xeric yards. After accounting for bird densities, the lower GUDs in mesic yards appeared largely driven by invasive and synanthropic species. Furthermore, behavioral responses of individual species were affected by yard design. Species visiting trays in both yard designs had lower GUDs in mesic yards. Differences in resource abundance (i.e., alternative resources more abundant and of higher quality in xeric yards) contributed to our results, while predation costs associated with foraging did not. By enhancing the GUD, a common method for assessing the costs associated with foraging, our statistical model provided insights into how individual species and bird densities influenced the GUD. These differences we found in foraging behavior were indicative of differences in habitat quality, and thus our study lends additional support for native landscapes to help reverse the loss of urban bird diversity.
Characterization of the substituted N-triazole oxindole TROX-1, a small-molecule, state-dependent inhibitor of Ca(V)2 calcium channels. - Molecular pharmacology
Biological, genetic, and clinical evidence provide validation for N-type calcium channels (Ca(V)2.2) as therapeutic targets for chronic pain. A state-dependent Ca(V)2.2 inhibitor may provide an improved therapeutic window over ziconotide, the peptidyl Ca(V)2.2 inhibitor used clinically. Supporting this notion, we recently reported that in preclinical models, the state-dependent Ca(V)2 inhibitor (3R)-5-(3-chloro-4-fluorophenyl)-3-methyl-3-(pyrimidin-5-ylmethyl)-1-(1H-1,2,4-triazol-3-yl)-1,3-dihydro-2H-indol-2-one (TROX-1) has an improved therapeutic window compared with ziconotide. Here we characterize TROX-1 inhibition of Cav2.2 channels in more detail. When channels are biased toward open/inactivated states by depolarizing the membrane potential under voltage-clamp electrophysiology, TROX-1 inhibits Ca(V)2.2 channels with an IC(50) of 0.11 μM. The voltage dependence of Ca(V)2.2 inhibition was examined using automated electrophysiology. TROX-1 IC(50) values were 4.2, 0.90, and 0.36 μM at -110, -90, and -70 mV, respectively. TROX-1 displayed use-dependent inhibition of Ca(V)2.2 with a 10-fold IC(50) separation between first (27 μM) and last (2.7 μM) pulses in a train. In a fluorescence-based calcium influx assay, TROX-1 inhibited Ca(V)2.2 channels with an IC(50) of 9.5 μM under hyperpolarized conditions and 0.69 μM under depolarized conditions. Finally, TROX-1 potency was examined across the Ca(V)2 subfamily. Depolarized IC(50) values were 0.29, 0.19, and 0.28 μM by manual electrophysiology using matched conditions and 1.8, 0.69, and 1.1 μM by calcium influx for Ca(V)2.1, Ca(V)2.2, and Ca(V)2.3, respectively. Together, these in vitro data support the idea that a state-dependent, non-subtype-selective Ca(V)2 channel inhibitor can achieve an improved therapeutic window over the relatively state-independent Ca(V)2.2-selective inhibitor ziconotide in preclinical models of chronic pain.
The impact of 2007 infective endocarditis prophylaxis guidelines on the practice of congenital heart disease specialists. - American heart journal
the impact of the 2007 American Heart Association endocarditis prophylaxis guidelines on clinician practice has not been well established. Our objective was to evaluate how the American Heart Association endocarditis guidelines changed the practice of cardiologists who manage congenital heart disease and to ascertain the degree of practice variation among cardiologists.a cross-sectional Web-based survey was e-mailed to Canadian (n = 134), Australian (n = 33), New Zealand (n = 9), and a random sample of American (n = 250) pediatric and adult congenital heart disease cardiologists in 2008. Nonrespondents received the survey 4 times by e-mail and once by regular post.the response rate was 55%. The lesions for which cardiologists were most evenly divided between recommending versus not recommending prophylaxis were "rheumatic mitral stenosis of moderate severity" (45% recommended prophylaxis) and "perimembranous ventricular septal defect (VSD) status post surgical patch closure with no residual shunt 3 months post-operatively" (54% recommended prophylaxis). The lesions for which the greatest proportion of cardiologists discontinued prophylaxis were "small muscular VSD, no previous endocarditis" (80% discontinued prophylaxis) and "small audible patent ductus arteriosus" (83% discontinued prophylaxis). Only 69% recommended prophylaxis for "VSD s/p surgical patch closure with small residual shunt" despite current guidelines recommending prophylaxis for this scenario. Twenty-eight percent of respondents felt that the new guidelines leave some patients at risk, and 6% would not recounsel any low-risk patients following these guidelines.the 2007 guidelines have resulted in a substantial change in endocarditis prophylaxis. There remains considerable heterogeneity among cardiologists regarding the prophylaxis of certain cardiac lesions.
High-precision recording of the action potential in isolated cardiomyocytes using the near-infrared fluorescent dye di-4-ANBDQBS. - American journal of physiology. Heart and circulatory physiology
The use of voltage-sensitive fluorescent dyes (VSD) for noninvasive measurement of the action potential (AP) in isolated cells has been hindered by low-photon yield of the preparation, dye toxicity, and photodynamic damage. Here we used a new red-shifted VSD, di-4-ANBDQBS, and a fast electron-multiplied charge-coupled device camera for optical AP (OAP) recording in guinea pig cardiac myocytes. Loading di-4-ANBDQBS did not alter APs recorded with micropipette. With short laser exposures (just enough to record one OAP every 1-5 min), di-4-ANBDQBS yielded fluorescent signals with very high signal-to-background ratios (change in fluorescence on depolarization/fluorescence at resting potential: 19.2 ± 4.1%) and signal-to-noise ratios (40 ± 13.2). Quantum chemical calculations comparing the ANBDQ chromophore to the conventional ANEP chromophore showed that the higher wavelength and the greater voltage sensitivity of the former have the same electro-optical origin: a longer path for electron redistribution in the excited state. OAP closely tracked simultaneously recorded electrical APs, permitting measurement of AP duration within 1% error. Prolonged laser exposure caused progressive AP duration prolongation and instability. However, these effects were alleviated or abolished by reducing the dye concentration and by perfusion with antioxidants. Thus the presented technique provides a unique opportunity for noninvasive AP recording in single cardiomyocytes.
Analgesic effects of a substituted N-triazole oxindole (TROX-1), a state-dependent, voltage-gated calcium channel 2 blocker. - The Journal of pharmacology and experimental therapeutics
Voltage-gated calcium channel (Ca(v))2.2 (N-type calcium channels) are key components in nociceptive transmission pathways. Ziconotide, a state-independent peptide inhibitor of Ca(v)2.2 channels, is efficacious in treating refractory pain but exhibits a narrow therapeutic window and must be administered intrathecally. We have discovered an N-triazole oxindole, (3R)-5-(3-chloro-4-fluorophenyl)-3-methyl-3-(pyrimidin-5-ylmethyl)-1-(1H-1,2,4-triazol-3-yl)-1,3-dihydro-2H-indol-2-one (TROX-1), as a small-molecule, state-dependent blocker of Ca(v)2 channels, and we investigated the therapeutic advantages of this compound for analgesia. TROX-1 preferentially inhibited potassium-triggered calcium influx through recombinant Ca(v)2.2 channels under depolarized conditions (IC(50) = 0.27 microM) compared with hyperpolarized conditions (IC(50) > 20 microM). In rat dorsal root ganglion (DRG) neurons, TROX-1 inhibited omega-conotoxin GVIA-sensitive calcium currents (Ca(v)2.2 channel currents), with greater potency under depolarized conditions (IC(50) = 0.4 microM) than under hyperpolarized conditions (IC(50) = 2.6 microM), indicating state-dependent Ca(v)2.2 channel block of native as well as recombinant channels. TROX-1 fully blocked calcium influx mediated by a mixture of Ca(v)2 channels in calcium imaging experiments in rat DRG neurons, indicating additional block of all Ca(v)2 family channels. TROX-1 reversed inflammatory-induced hyperalgesia with maximal effects equivalent to nonsteroidal anti-inflammatory drugs, and it reversed nerve injury-induced allodynia to the same extent as pregabalin and duloxetine. In contrast, no significant reversal of hyperalgesia was observed in Ca(v)2.2 gene-deleted mice. Mild impairment of motor function in the Rotarod test and cardiovascular functions were observed at 20- to 40-fold higher plasma concentrations than required for analgesic activities. TROX-1 demonstrates that an orally available state-dependent Ca(v)2 channel blocker may achieve a therapeutic window suitable for the treatment of chronic pain.

Map & Directions

1952 Sunset Cliffs Blvd San Diego, CA 92107
View Directions In Google Maps

Nearby Doctors

4969 Santa Cruz Ave
San Diego, CA 92107
619 870-0273
1829 Sunset Cliffs Blvd
San Diego, CA 92107
619 231-1601
2115 Bacon St
San Diego, CA 92107
619 242-2986
1857 Cable St
San Diego, CA 92107
619 243-3391
4585 Bermuda Ave
San Diego, CA 92107
619 327-7579
1991 Sunset Cliffs Blvd
San Diego, CA 92107
619 221-1587
1806 Cable St
San Diego, CA 92107
619 264-4784
1499 Sunset Cliffs Blvd
San Diego, CA 92107
619 242-2210
4822 Newport Ave
San Diego, CA 92107
619 220-0559
4550 Saratoga Ave
San Diego, CA 92107
619 178-8171