Dr. Sandeep  Mallipattu   image

Dr. Sandeep Mallipattu

26 Research Way Stony Brook Internists, Ufpc
East Setauket NY 11733
631 440-0580
Medical School: Other - Unknown
Accepts Medicare: No
Participates In eRX: No
Participates In PQRS: No
Participates In EHR: No
License #: 250660
NPI: 1619139094
Taxonomy Codes:

Request Appointment Information

Awards & Recognitions

About Us

Practice Philosophy


Medical Malpractice Cases

None Found

Medical Board Sanctions

None Found


None Found


The beneficial role of retinoids in glomerular disease. - Frontiers in medicine
The primary etiology of CKD is a direct consequence of initial dysfunction and injury of the glomerulus, the main filtration system. Podocytes are terminally differentiated epithelial cells in the glomerulus, whose major function is the maintenance of this renal filtration barrier. Podocyte injury is implicated in many glomerular diseases including focal segmental glomerular sclerosis and HIV-associated nephropathy. In many of these diseased conditions, the podocyte can either undergo dedifferentiation and proliferation, apoptosis, or cell detachment. Regardless of the initial type of injury, the podocyte ultimately loses its functional capacity to maintain the glomerular filtration barrier. Significant injury resulting in a loss of the podocytes and failure to maintain the renal filtration barrier contributes to progressive kidney disease. Consequently, therapies that prevent podocyte injury and promote their regeneration will have a major clinical impact on glomerular disease. Retinoic acid (RA), which is a derivative of vitamin A, has many cellular functions including induction of cell differentiation, regulation of apoptosis, and inhibition of inflammation and proliferation. RA is required for kidney development and is essential for cellular differentiation in the setting of podocyte injury. The mechanism by which RA directs its beneficial effects is multifactorial, ranging from its anti-inflammatory and anti-fibrotic effects to a direct effect of upregulating podocyte differentiation markers in the podocyte. The focus of this review is to provide an overview of RA in kidney development and glomerular disease. We also highlight the key mechanism(s) by which RA restores podocyte differentiation markers and ameliorates glomerular disease.
Krüppel-like factor 6 regulates mitochondrial function in the kidney. - The Journal of clinical investigation
Maintenance of mitochondrial structure and function is critical for preventing podocyte apoptosis and eventual glomerulosclerosis in the kidney; however, the transcription factors that regulate mitochondrial function in podocyte injury remain to be identified. Here, we identified Krüppel-like factor 6 (KLF6), a zinc finger domain transcription factor, as an essential regulator of mitochondrial function in podocyte apoptosis. We observed that podocyte-specific deletion of Klf6 increased the susceptibility of a resistant mouse strain to adriamycin-induced (ADR-induced) focal segmental glomerulosclerosis (FSGS). KLF6 expression was induced early in response to ADR in mice and cultured human podocytes, and prevented mitochondrial dysfunction and activation of intrinsic apoptotic pathways in these podocytes. Promoter analysis and chromatin immunoprecipitation studies revealed that putative KLF6 transcriptional binding sites are present in the promoter of the mitochondrial cytochrome c oxidase assembly gene (SCO2), which is critical for preventing cytochrome c release and activation of the intrinsic apoptotic pathway. Additionally, KLF6 expression was reduced in podocytes from HIV-1 transgenic mice as well as in renal biopsies from patients with HIV-associated nephropathy (HIVAN) and FSGS. Together, these findings indicate that KLF6-dependent regulation of the cytochrome c oxidase assembly gene is critical for maintaining mitochondrial function and preventing podocyte apoptosis.
Reduced Krüppel-like factor 2 expression may aggravate the endothelial injury of diabetic nephropathy. - Kidney international
Krüppel-like factor 2 (KLF2), a shear stress-inducible transcription factor, has endoprotective effects. In streptozotocin-induced diabetic rats, we found that glomerular Klf2 expression was reduced in comparison with nondiabetic rats. However, normalization of hyperglycemia by insulin treatment increased Klf2 expression to a level higher than that of nondiabetic rats. Consistent with this, we found that Klf2 expression was suppressed by high glucose but increased by insulin in cultured endothelial cells. To determine the role of KLF2 in streptozotocin-induced diabetic nephropathy, we used endothelial cell-specific Klf2 heterozygous knockout mice and found that diabetic knockout mice developed more kidney/glomerular hypertrophy and proteinuria than diabetic wild-type mice. Glomerular expression of Vegfa, Flk1, and angiopoietin 2 increased, but expression of Flt1, Tie2, and angiopoietin 1 decreased, in diabetic knockout mice compared with diabetic wild-type mice. Glomerular expression of ZO-1, glycocalyx, and eNOS was also decreased in diabetic knockout compared with diabetic wild-type mice. These data suggest knockdown of Klf2 expression in the endothelial cells induced more endothelial cell injury. Interestingly, podocyte injury was also more prominent in diabetic knockout compared with diabetic wild-type mice, indicating a cross talk between these two cell types. Thus, KLF2 may play a role in glomerular endothelial cell injury in early diabetic nephropathy.
Advanced glycation end product accumulation: a new enemy to target in chronic kidney disease? - Current opinion in nephrology and hypertension
The critical role of advanced glycation end products (AGEs) in the progression of chronic diseases and their complications has recently become more apparent. This review summarizes the recent contributions to the field of AGEs in chronic kidney disease (CKD).Over the past 3 decades, AGEs have been implicated in the progression of CKD, and specifically diabetic nephropathy. Although numerous in-vitro and in-vivo studies highlight the detrimental role of AGEs accumulation in tissue injury, few prospective human studies or clinical trials show that inhibiting this process ameliorates disease. Nonetheless, recent studies have focused on the novel mechanisms that contribute to end-organ injury as a result of AGEs accumulation, as well as novel targets of therapy in kidney disease.As the prevalence and the incidence of CKD rises in the United States, it is essential to identify therapeutic strategies that either delay the progression of CKD or improve mortality in this population. The focus of this review is on highlighting the recent studies that advance our current understanding of the mechanisms mediating AGEs-induced CKD progression, as well as novel treatment strategies that have the potential to abrogate this disease process.
In vivo RNA interference models of inducible and reversible Sirt1 knockdown in kidney cells. - The American journal of pathology
The silent mating type information regulation 2 homolog 1 gene (Sirt1) encodes an NAD-dependent deacetylase that modifies the activity of well-known transcriptional regulators affected in kidney diseases. Sirt1 is expressed in the kidney podocyte, but its function in the podocyte is not clear. Genetically engineered mice with inducible and reversible Sirt1 knockdown in widespread, podocyte-specific, or tubular-specific patterns were generated. We found that mice with 80% knockdown of renal Sirt1 expression have normal glomerular function under the basal condition. When challenged with doxorubicin (Adriamycin), these mice develop marked albuminuria, glomerulosclerosis, mitochondrial injury, and impaired autophagy of damaged mitochondria. Reversal of Sirt1 knockdown during the early phase of Adriamycin-induced nephropathy prevented the progression of glomerular injury and reduced the accumulation of dysmorphic mitochondria in podocytes but did not reverse the progression of albuminuria and glomerulosclerosis. Sirt1 knockdown mice with diabetes mellitus, which is known to cause mitochondrial dysfunction in the kidney, developed more albuminuria and mitochondrial dysfunction compared with diabetic mice without Sirt1 knockdown. In conclusion, these results demonstrate that our RNA interference-mediated Sirt1 knockdown models are valid and versatile tools for characterizing the function of Sirt1 in the kidney; Sirt1 plays a role in homeostatic maintenance of podocytes under the condition of mitochondrial stress/injury.Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Diabetic nephropathy in a nonobese mouse model of type 2 diabetes mellitus. - American journal of physiology. Renal physiology
A large body of research has contributed to our understanding of the pathophysiology of diabetic nephropathy. Yet, many questions remain regarding the progression of a disease that accounts for nearly half the patients entering dialysis yearly. Several murine models of diabetic nephropathy secondary to Type 2 diabetes mellitus (T2DM) do exist, and some are more representative than others, but all have limitations. In this study, we aimed to identify a new mouse model of diabetic nephropathy secondary to T2DM in a previously described T2DM model, the MKR (MCK-KR-hIGF-IR) mouse. In this mouse model, T2DM develops as a result of functional inactivation of insulin-like growth factor-1 receptor (IGF-1R) in the skeletal muscle. These mice are lean, with marked insulin resistance, hyperinsulinemia, hyperglycemia, and dyslipidemia and thus are representative of nonobese human T2DM. We show that the MKR mice, when under stress (high-fat diet or unilateral nephrectomy), develop progressive diabetic nephropathy with marked albuminuria and meet the histopathological criteria as defined by the Animal Models of Diabetic Complications Consortium. Finally, these MKR mice are fertile and are on a common background strain, making it a novel model to study the progression of diabetic nephropathy.
The changing epidemiology of HIV-related chronic kidney disease in the era of antiretroviral therapy. - Kidney international
The epidemiology of kidney disease in HIV-infected individuals has changed significantly since the introduction of combination antiretroviral therapy (cART) in the mid 1990s. HIV-associated nephropathy (HIVAN), an aggressive form of collapsing focal segmental glomerulosclerosis (FSGS) caused by direct HIV infection of the kidney in a genetically susceptible host, emerged early in the HIV epidemic as a leading cause of end-stage renal disease. With the widespread use of cART, HIVAN is increasingly rare in populations with access to care, and the spectrum of HIV-related chronic kidney disease now reflects the growing burden of comorbid disease in the aging HIV population. Nonetheless, available data suggest that both HIV infection and cART nephrotoxicity continue to contribute to the increased risk of chronic kidney disease in HIV-infected individuals in the United States and Europe. Despite the genetic susceptibility to HIVAN in individuals of West African descent, limited data are available to define the prevalence and spectrum of HIV-related kidney disease in sub-Saharan Africa, which is home to two-thirds of the world's HIV population. In this mini-review, we characterize the changing epidemiology of HIV-related chronic kidney disease in Western nations and in sub-Saharan Africa.
Renoprotective effect of combined inhibition of angiotensin-converting enzyme and histone deacetylase. - Journal of the American Society of Nephrology : JASN
The Connectivity Map database contains microarray signatures of gene expression derived from approximately 6000 experiments that examined the effects of approximately 1300 single drugs on several human cancer cell lines. We used these data to prioritize pairs of drugs expected to reverse the changes in gene expression observed in the kidneys of a mouse model of HIV-associated nephropathy (Tg26 mice). We predicted that the combination of an angiotensin-converting enzyme (ACE) inhibitor and a histone deacetylase inhibitor would maximally reverse the disease-associated expression of genes in the kidneys of these mice. Testing the combination of these inhibitors in Tg26 mice revealed an additive renoprotective effect, as suggested by reduction of proteinuria, improvement of renal function, and attenuation of kidney injury. Furthermore, we observed the predicted treatment-associated changes in the expression of selected genes and pathway components. In summary, these data suggest that the combination of an ACE inhibitor and a histone deacetylase inhibitor could have therapeutic potential for various kidney diseases. In addition, this study provides proof-of-concept that drug-induced expression signatures have potential use in predicting the effects of combination drug therapy.
Deletion of podocyte STAT3 mitigates the entire spectrum of HIV-1-associated nephropathy. - AIDS (London, England)
HIV-1 gene expression in kidney epithelial cells is thought to be responsible for the pathogenesis of HIV-1-associated nephropathy (HIVAN). Signal transducer and activator of transcription (STAT) 3 signaling is activated in podocytes of patients with HIVAN and drives the dedifferentiation and proliferation of podocytes in culture. We confirm here that deletion of podocyte STAT3 is sufficient to mitigate the glomerular as well as tubulointerstitial findings of HIVAN.To demonstrate the functional role of podocyte STAT3 in the pathogenesis of HIVAN we compared the development of HIVAN in Tg26 HIV-transgenic mice with and without deletion of STAT3 in the podocyte.Tg26 mice with podocyte-specific STAT3 deletion developed significantly less weight loss, albuminuria, and renal function impairment compared to Tg26 mice without STAT3 deletion. Tg26 mice with podocyte STAT3 deletion also had significantly less glomerular collapse, sclerosis, epithelial cell hyperplasia, podocyte dedifferentiation, and proinflammatory STAT3 target gene expression; and tubulointerstitial changes of HIVAN, including tubular atrophy, degeneration, apoptosis, and lymphocyte infiltration, were also significantly reduced compared to Tg26 mice without STAT3 deletion.Development of glomerular as well as tubulointerstitial injuries in the Tg26 HIVAN model is dependent on podocyte STAT3 expression. Inhibition of STAT3 could be a potential adjunctive therapy for the treatment of HIVAN.
Expression of HIV transgene aggravates kidney injury in diabetic mice. - Kidney international
With the widespread use of combination antiretroviral agents, the incidence of HIV-associated nephropathy has decreased. Currently, HIV-infected patients live much longer and often suffer from comorbidities such as diabetes mellitus. Recent epidemiological studies suggest that concurrent HIV infection and diabetes mellitus may have a synergistic effect on the incidence of chronic kidney disease. To address this, we determined whether HIV-1 transgene expression accelerates diabetic kidney injury using a diabetic HIV-1 transgenic (Tg26) murine model. Diabetes was initially induced with low-dose streptozotocin in both Tg26 and wild-type mice on a C57BL/6 background, which is resistant to classic HIV-associated nephropathy. Although diabetic nephropathy is minimally observed on the C57BL/6 background, diabetic Tg26 mice exhibited a significant increase in glomerular injury compared with nondiabetic Tg26 mice and diabetic wild-type mice. Validation of microarray gene expression analysis from isolated glomeruli showed a significant upregulation of proinflammatory pathways in diabetic Tg26 mice. Thus, our study found that expression of HIV-1 genes aggravates diabetic kidney disease.

Map & Directions

26 Research Way Stony Brook Internists, Ufpc East Setauket, NY 11733
View Directions In Google Maps

Nearby Doctors

30 Andrea Dr
Setauket, NY 11733
631 212-2132
100 S Jersey Ave Suite 12
East Setauket, NY 11733
631 519-9565
3250 Nesconset Hwy
Setauket, NY 11733
631 899-9719
6 Technology Drive Suite 100
East Setauket, NY 11733
631 896-6698
205 N Belle Mead Ave
East Setauket, NY 11733
631 444-4630
8 Shen Ct
Setauket, NY 11733
631 783-3342
47 Bennetts Rd
East Setauket, NY 11733
631 410-0078
14 Technology Dr
East Setauket, NY 11733
631 444-4233