Docality.com Logo
 
Dr. Daniel  Rial  Phd image

Dr. Daniel Rial Phd

296 4Th St # 934
Ponderay ID 83852
208 104-4682
Medical School: Other - Unknown
Accepts Medicare: No
Participates In eRX: No
Participates In PQRS: No
Participates In EHR: No
License #: 376
NPI: 1578712618
Taxonomy Codes:
103T00000X

Request Appointment Information

Awards & Recognitions

About Us

Practice Philosophy

Conditions

Medical Malpractice Cases

None Found

Medical Board Sanctions

None Found

Referrals

None Found

Publications

Decreased synaptic plasticity in the medial prefrontal cortex underlies short-term memory deficits in 6-OHDA-lesioned rats. - Behavioural brain research
Parkinson's disease (PD) is characterized by motor dysfunction associated with dopaminergic degeneration in the dorsolateral striatum (DLS). However, motor symptoms in PD are often preceded by short-term memory deficits, which have been argued to involve deregulation of medial prefrontal cortex (mPFC). We now used a 6-hydroxydopamine (6-OHDA) rat PD model to explore if alterations of synaptic plasticity in DLS and mPFC underlie short-term memory impairments in PD prodrome. The bilateral injection of 6-OHDA (20μg/hemisphere) in the DLS caused a marked loss of dopaminergic neurons in the substantia nigra (>80%) and decreased monoamine levels in the striatum and PFC, accompanied by motor deficits evaluated after 21 days in the open field and accelerated rotarod. A lower dose of 6-OHDA (10μg/hemisphere) only induced a partial degeneration (about 60%) of dopaminergic neurons in the substantia nigra with no gross motor impairments, thus mimicking an early premotor stage of PD. Notably, 6-OHDA (10μg)-lesioned rats displayed decreased monoamine levels in the PFC as well as short-term memory deficits evaluated in the novel object discrimination and in the modified Y-maze tasks; this was accompanied by a selective decrease in the amplitude of long-term potentiation in the mPFC, but not in DLS, without changes of synaptic transmission in either brain regions. These results indicate that the short-term memory dysfunction predating the motor alterations in the 6-OHDA model of PD is associated with selective changes of information processing in PFC circuits, typified by persistent changes of synaptic plasticity.Copyright © 2015 Elsevier B.V. All rights reserved.
Exercise Improves Cognitive Impairment and Dopamine Metabolism in MPTP-Treated Mice. - Neurotoxicity research
The classical motor symptoms of Parkinson's disease (PD) are preceded by non-motor symptoms in preclinical stages, including cognition impairment. The current drug treatment for PD is palliative and does not meet the clinical challenges of the disease, such as levodopa-induced dyskinesia, non-motor symptoms, and neuroprotection. We investigated the neuroprotective and disease-modifying potential of physical exercise in a preclinical animal model of PD. C57BL/6 mice (adult males) ran on a horizontal treadmill for 6 weeks (moderate intensity, 5 times/week) and were treated intranasally with 65 mg/kg of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Exercise did not protect against MPTP-induced nigrostriatal neurodegeneration or frontostriatal dopamine depletion but decreased striatal dopamine turnover. Exercise also attenuated procedural and working memory impairment and D2 receptor hypersensitivity in MPTP-treated mice. In summary, exercise improved dopaminergic neurotransmission and enhanced cognition in a preclinical animal model of PD.
Adenosine A2B receptor activation stimulates glucose uptake in the mouse forebrain. - Purinergic signalling
ATP consumption during intense neuronal activity leads to peaks of both extracellular adenosine levels and increased glucose uptake in the brain. Here, we investigated the hypothesis that the activation of the low-affinity adenosine receptor, the A2B receptor (A2BR), promotes glucose uptake in neurons and astrocytes, thereby linking brain activity with energy metabolism. To this end, we mapped the spatiotemporal accumulation of the fluorescent-labelled deoxyglucose, 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG), in superfused acute hippocampal slices of C57Bl/6j mice. Bath application of the A2BR agonist BAY606583 (300 nM) triggered an immediate and stable (>10 min) increase of the velocity of 2-NBDG accumulation throughout hippocampal slices. This was abolished with the pretreatment with the selective A2BR antagonist, MRS1754 (200 nM), and was also absent in A2BR null-mutant mice. In mouse primary astrocytic or neuronal cultures, BAY606583 similarly increased (3)H-deoxyglucose uptake in the following 20 min incubation period, which was again abolished by a pretreatment with MRS1754. Finally, incubation of hippocampal, frontocortical, or striatal slices of C57Bl/6j mice at 37 °C, with either MRS1754 (200 nM) or adenosine deaminase (3 U/mL) significantly reduced glucose uptake. Furthermore, A2BR blockade diminished newly synthesized glycogen content and at least in the striatum, increased lactate release. In conclusion, we report here that A2BR activation is associated with an instant and tonic increase of glucose transport into neurons and astrocytes in the mouse brain. These prompt further investigations to evaluate the clinical potential of this novel glucoregulator mechanism.
Temporal Dissociation of Striatum and Prefrontal Cortex Uncouples Anhedonia and Defense Behaviors Relevant to Depression in 6-OHDA-Lesioned Rats. - Molecular neurobiology
The dorsolateral striatum (DLS) processes motor and non-motor functions and undergoes extensive dopaminergic degeneration in Parkinson's disease (PD). The nigrostriatal dopaminergic degeneration also affects other brain areas including the pre-frontal cortex (PFC), which has been associated with the appearance of anhedonia and depression at pre-motor phases of PD. Using behavioral, neurochemical, and electrophysiological approaches, we investigated the temporal dissociation between the role of the DLS and PFC in the appearance of anhedonia and defense behaviors relevant to depression in rats submitted to bilateral DLS lesions with 6-hydroxydopamine (6-OHDA; 10 μg/hemisphere). 6-OHDA induced partial dopaminergic nigrostriatal damage with no gross motor impairments. Anhedonic-like behaviors were observed in the splash and sucrose consumption tests only 7 days after 6-OHDA lesion. By contrast, defense behaviors relevant to depression evaluated in the forced swimming test and social withdrawal only emerged 21 days after 6-OHDA lesion when anhedonia was no longer present. These temporally dissociated behavioral alterations were coupled to temporal- and structure-dependent alterations in dopaminergic markers such as dopamine D1 and D2 receptors and dopamine transporter, leading to altered dopamine sensitivity in DLS and PFC circuits, evaluated electrophysiologically. These results provide the first demonstration of a dissociated involvement of the DLS and PFC in anhedonic-like and defense behaviors relevant to depression in 6-OHDA-lesioned rats, which was linked with temporal fluctuations in dopaminergic receptor density, leading to altered dopaminergic system sensitivity in these two brain structures. This sheds new light to the duality between depressive and anhedonic symptoms in PD.
Inactivation of adenosine A2A receptors reverses working memory deficits at early stages of Huntington's disease models. - Neurobiology of disease
Cognitive impairments in Huntington's disease (HD) are attributed to a dysfunction of the cortico-striatal pathway and significantly affect the quality of life of the patients, but this has not been a therapeutic focus in HD to date. We postulated that adenosine A(2A) receptors (A(2A)R), located at pre- and post-synaptic elements of the cortico-striatal pathways, modulate striatal neurotransmission and synaptic plasticity and cognitive behaviors. To critically evaluate the ability of A(2A)R inactivation to prevent cognitive deficits in early HD, we cross-bred A(2A)R knockout (KO) mice with two R6/2 transgenic lines of HD (CAG120 and CAG240) to generate two double transgenic R6/2-CAG120-A(2A)R KO and R6/2-CAG240-A(2A)R KO mice and their corresponding wild-type (WT) littermates. Genetic inactivation of A(2A)R prevented working memory deficits induced by R6/2-CAG120 at post-natal week 6 and by R6/2-CAG240 at post-natal month 2 and post-natal month 3, without modifying motor deficits. Similarly the A2(A)R antagonist KW6002 selectively reverted working memory deficits in R6/2-CAG240 mice at post-natal month 3. The search for possible mechanisms indicated that the genetic inactivation of A(2A)R did not affect ubiquitin-positive neuronal inclusions, astrogliosis or Thr-75 phosphorylation of DARPP-32 in the striatum. Importantly, A(2A)R blockade preferentially controlled long-term depression at cortico-striatal synapses in R6/2-CAG240 at post-natal week 6. The reported reversal of working memory deficits in R6/2 mice by the genetic and pharmacological inactivation of A(2A)R provides a proof-of-principle for A(2A)R as novel targets to reverse cognitive deficits in HD, likely by controlling LTD deregulation.Copyright © 2015. Published by Elsevier Inc.
Adenosine A2b receptors control A1 receptor-mediated inhibition of synaptic transmission in the mouse hippocampus. - The European journal of neuroscience
Adenosine is a neuromodulator mostly acting through A1 (inhibitory) and A2A (excitatory) receptors in the brain. A2B receptors (A(2B)R) are G(s/q)--protein-coupled receptors with low expression in the brain. As A(2B)R function is largely unknown, we have now explored their role in the mouse hippocampus. We performed electrophysiological extracellular recordings in mouse hippocampal slices, and immunological analysis of nerve terminals and glutamate release in hippocampal slices and synaptosomes. Additionally, A(2B)R-knockout (A(2B)R-KO) and C57/BL6 mice were submitted to a behavioural test battery (open field, elevated plus-maze, Y-maze). The A(2B)R agonist BAY60-6583 (300 nM) decreased the paired-pulse stimulation ratio, an effect prevented by the A(2B)R antagonist MRS 1754 (200 nM) and abrogated in A(2B)R-KO mice. Accordingly, A(2B)R immunoreactivity was present in 73 ± 5% of glutamatergic nerve terminals, i.e. those immunopositive for vesicular glutamate transporters. Furthermore, BAY 60-6583 attenuated the A(1)R control of synaptic transmission, both the A(1)R inhibition caused by 2-chloroadenosine (0.1-1 μM) and the disinhibition caused by the A(1)R antagonist DPCPX (100 nM), both effects prevented by MRS 1754 and abrogated in A(2B)R-KO mice. BAY 60-6583 decreased glutamate release in slices and also attenuated the A(1)R inhibition (CPA 100 nM). A(2B)R-KO mice displayed a modified exploratory behaviour with an increased time in the central areas of the open field, elevated plus-maze and the Y-maze and no alteration of locomotion, anxiety or working memory. We conclude that A(2B)R are present in hippocampal glutamatergic terminals where they counteract the predominant A(1)R-mediated inhibition of synaptic transmission, impacting on exploratory behaviour.© 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Behavioral phenotyping of Parkin-deficient mice: looking for early preclinical features of Parkinson's disease. - PloS one
There is considerable evidence showing that the neurodegenerative processes that lead to sporadic Parkinson's disease (PD) begin many years before the appearance of the characteristic motor symptoms. Neuropsychiatric, sensorial and cognitive deficits are recognized as early non-motor manifestations of PD, and are not attenuated by the current anti-parkinsonian therapy. Although loss-of-function mutations in the parkin gene cause early-onset familial PD, Parkin-deficient mice do not display spontaneous degeneration of the nigrostriatal pathway or enhanced vulnerability to dopaminergic neurotoxins such as 6-OHDA and MPTP. Here, we employed adult homozygous C57BL/6 mice with parkin gene deletion on exon 3 (parkin-/-) to further investigate the relevance of Parkin in the regulation of non-motor features, namely olfactory, emotional, cognitive and hippocampal synaptic plasticity. Parkin-/- mice displayed normal performance on behavioral tests evaluating olfaction (olfactory discrimination), anxiety (elevated plus-maze), depressive-like behavior (forced swimming and tail suspension) and motor function (rotarod, grasping strength and pole). However, parkin-/- mice displayed a poor performance in the open field habituation, object location and modified Y-maze tasks suggestive of procedural and short-term spatial memory deficits. These behavioral impairments were accompanied by impaired hippocampal long-term potentiation (LTP). These findings indicate that the genetic deletion of parkin causes deficiencies in hippocampal synaptic plasticity, resulting in memory deficits with no major olfactory, emotional or motor impairments. Therefore, parkin-/- mice may represent a promising animal model to study the early stages of PD and for testing new therapeutic strategies to restore learning and memory and synaptic plasticity impairments in PD.
The adenosine neuromodulation system in schizophrenia. - International review of neurobiology
The management of schizophrenia endophenotypes, namely positive, negative, and cognitive symptoms is still an open goal, justifying the search of novel therapeutic avenues. We now review the evidence supporting the interest in targeting the adenosine modulation system to counteract the core features of schizophrenia. This interest is forwarded by the combined ability of strategies aimed at bolstering adenosine levels together with the increasingly recognized impact of adenosine A2A receptors to control dopaminergic signaling, working memory, and behavioral sensitization; this is further heralded by the suggested clinical effectiveness of therapies increasing extracellular adenosine such as dipyridamole and allopurinol and the emergent recognition of a role for adenosine in neurodevelopment. Finally, the combined role of A1 and A2A receptors in assisting the implementation of adaptive changes and encoding of information salience in neuronal circuits together with the adaptive alterations of A1 and A2A receptor density upon brain dysfunction prompts the novel working hypothesis that the parallel imbalance of adenosine formation and of A1 and A2A receptors blurs the adequate encoding of information salience in neuronal circuits, which we propose to be a core pathogenic feature in the development of schizophrenia endophenotypes. This proposal should also provide a rationale to assist the design of future therapeutic intervention targeting the adenosine modulation system to manage schizophrenia endophenotypes: these should not be based only on an attempt to target adenosine kinase-A1 receptors or only A2A receptors, but should instead simultaneously target these two arms of the adenosine modulation system.© 2014 Elsevier Inc. All rights reserved.
Cellular prion protein (PrP(C)) modulates ethanol-induced behavioral adaptive changes in mice. - Behavioural brain research
Chronic consumption of drugs with addictive potential induces profound synaptic changes in the dopaminergic mesocorticolimbic pathway that underlie the long-term behavioral alterations seen in addicted subjects. Thus, exploring modulation systems of dopaminergic function may reveal novel targets to interfere with drug addiction. We recently showed that cellular prion protein (PrP(C)) affects the homeostasis of the dopaminergic system by interfering with dopamine synthesis, content, receptor density and signaling pathways in different brain areas. Here we report that the genetic deletion of PrP(C) modulates ethanol (EtOH)-induced behavioral alterations including the maintenance of drug seeking, voluntary consumption and the development of EtOH tolerance, all pivotal steps in drug addiction. Notably, these behavioral changes were accompanied by a significant depletion of dopamine levels in the prefrontal cortex and reduced dopamine D1 receptors in PrP(C) knockout mice. Furthermore, the pharmacological blockade of dopamine D1 receptors, but not D2 receptors, attenuated the abnormal EtOH consumption in PrP(C) knockout mice. Altogether, these findings provide new evidence that the PrP(C)/dopamine interaction plays a pivotal role in EtOH addictive properties in mice.Copyright © 2014 Elsevier B.V. All rights reserved.
Cellular prion protein is present in dopaminergic neurons and modulates the dopaminergic system. - The European journal of neuroscience
Cellular prion protein (PrP(C) ) is widely expressed in the brain. Although the precise role of PrP(C) remains uncertain, it has been proposed to be a pivotal modulator of neuroplasticity events by regulating the glutamatergic and serotonergic systems. Here we report the existence of neurochemical and functional interactions between PrP(C) and the dopaminergic system. PrP(C) was found to co-localize with dopaminergic neurons and in dopaminergic synapses in the striatum. Furthermore, the genetic deletion of PrP(C) down-regulated dopamine D1 receptors and DARPP-32 density in the striatum and decreased dopamine levels in the prefrontal cortex of mice. This indicates that PrP(C) affects the homeostasis of the dopaminergic system by interfering differently in different brain areas with dopamine synthesis, content, receptor density and signaling pathways. This interaction between PrP(C) and the dopaminergic system prompts the hypotheses that the dopaminergic system may be implicated in some pathological features of prion-related diseases and, conversely, that PrP(C) may play a role in dopamine-associated brain disorders.© 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

Map & Directions

296 4Th St # 934 Ponderay, ID 83852
View Directions In Google Maps

Nearby Doctors

30544 Highway 200 Ste 101
Ponderay, ID 83852
208 636-6300
400 Schweitzer Plaza Dr Suite 1
Ponderay, ID 83852
208 630-0649
476999 Highway 95
Ponderay, ID 83852
208 555-5513
30410 Highway 200
Ponderay, ID 83852
208 637-7101
476653 Highway 95 Suite 1
Ponderay, ID 83852
208 656-6771
30544 Highway 200 Ste 102
Ponderay, ID 83852
208 659-9817
30410 Highway 200 Ste 202
Ponderay, ID 83852
208 632-2247
476653 Highway 95
Ponderay, ID 83852
208 659-9400
30410 Highway 200
Ponderay, ID 83852
208 637-7101