Docality.com Logo
 
Dr. Wenyi  Luo  Md image

Dr. Wenyi Luo Md

940 Sl Young Blvd
Oklahoma City OK 73104
405 712-2451
Medical School: Other - Unknown
Accepts Medicare: No
Participates In eRX: No
Participates In PQRS: No
Participates In EHR: No
License #: 29931
NPI: 1457795270
Taxonomy Codes:
207ZP0102X

Request Appointment Information

Awards & Recognitions

About Us

Practice Philosophy

Conditions

Medical Malpractice Cases

None Found

Medical Board Sanctions

None Found

Referrals

None Found

Publications

Mammary analog secretory carcinoma of salivary gland with high-grade histology arising in hard palate, report of a case and review of literature. - International journal of clinical and experimental pathology
Mammary gland analog secretary carcinoma (MASC) of salivary gland is typically a tumor of low histologic grade and behaves as a low-grade malignancy with relatively benign course. This tumor shares histologic features, immunohistochemical profile, and a highly specific genetic translocation, ETV6-NTRK3, with secretory carcinoma of breast. Histologically, it is often mistaken as acinic cell carcinoma, adenocarcinoma not otherwise specified, and other primary salivary gland tumors. Here we report a case of MASC with high-grade transformation and cervical lymph node metastases confirmed with ETV6-NTRK3 translocation arising in the hard palate of a 41 year-old adult. Interestingly, the metastatic carcinoma has lower grade than the original tumor which strongly support malignant transformation of the original tumor. Most commonly, MASC arises from the parotid gland and less often in minor salivary glands. Metastasis is relatively uncommon and high-grade histology has only been reported in four cases with three of them arising from the parotid gland and the location of the fourth one has not been reported. This is the first case with high grade histology that arise from minor salivary gland and it emphasizes the importance of molecular screening of salivary gland tumor with high-grade histology for ETV6-NTRK3 translocation. In our literature of 115 cases that includes the current case, MASC occurred predominantly in adult with only a few cases under 18 years of age and a male to female ratio of 1.2:1. Parotid gland is more commonly affected but there is also significant occurrence in minor salivary glands. Except for the cases with high grade histology, the overall prognosis is good.
Hu antigen R (HuR) is a positive regulator of the RNA-binding proteins TDP-43 and FUS/TLS: implications for amyotrophic lateral sclerosis. - The Journal of biological chemistry
Posttranscriptional gene regulation is governed by a network of RNA-binding proteins (RBPs) that interact with regulatory elements in the mRNA to modulate multiple molecular processes, including splicing, RNA transport, RNA stability, and translation. Mounting evidence indicates that there is a hierarchy within this network whereby certain RBPs cross-regulate other RBPs to coordinate gene expression. HuR, an RNA-binding protein we linked previously to aberrant VEGF mRNA metabolism in models of SOD1-associated amyotrophic lateral sclerosis, has been identified as being high up in this hierarchy, serving as a regulator of RNA regulators. Here we investigated the role of HuR in regulating two RBPs, TDP-43 and FUS/TLS, that have been linked genetically to amyotrophic lateral sclerosis. We found that HuR promotes the expression of both RBPs in primary astrocytes and U251 cells under normal and stressed (hypoxic) conditions. For TDP-43, we found that HuR binds to the 3' untranslated region (UTR) and regulates its expression through translational efficiency rather than RNA stability. With HuR knockdown, there was a shift of TDP-43 and FUS mRNAs away from polysomes, consistent with translational silencing. The TDP-43 splicing function was attenuated upon HuR knockdown and could be rescued by ectopic TDP-43 lacking the 3' UTR regulatory elements. Finally, conditioned medium from astrocytes in which HuR or TDP-43 was knocked down produced significant motor neuron and cortical neuron toxicity in vitro. These findings indicate that HuR regulates TDP-43 and FUS/TLS expression and that loss of HuR-mediated RNA processing in astrocytes can alter the molecular and cellular landscape to produce a toxic phenotype.© 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Identification of exopolysaccharide-deficient mutants of Mycoplasma pulmonis. - Molecular microbiology
The presence of capsular exopolysaccharide (EPS) in Mollicutes has been inferred from electron micrographs for over 50 years without conclusive data to support the production of complex carbohydrates by the organism. Mycoplasma pulmonis binds the lectin Griffonia simplicifolia I (GS-I), which is specific for terminal beta-linked galactose residues. Mutants that failed to produce the EPS bound by GS-I were isolated from a transposon library. All of the mutants had the transposon located in open reading frame MYPU_7410 or MYPU_7420. These overlapping genes are predicted to code for a heterodimeric pair of ABC transporter permeases and may code for part of a new pathway for synthesis of EPS. Analysis by lectin-affinity chromatography in conjunction with gas chromatography demonstrated that the wild-type mycoplasma produced an EPS (EPS-I) composed of equimolar amounts of glucose and galactose that was lacking in the mutants. Phenotypic analysis revealed that the mutants had an increased propensity to form a biofilm on glass surfaces, colonized mouse lung and trachea efficiently, but had a decreased association with the A549 lung cell line. Confounding the interpretation of these results is the observation that the mutants missing EPS-I had an eightfold overproduction of an apparent second EPS (EPS-II) containing N-acetylglucosamine.
Identification of an isoschizomer of the HhaI DNA methyltransferase in Mycoplasma arthritidis. - FEMS microbiology letters
The genome of Mycoplasma arthritidis strain 158 has modified cytosine residues at AGCT sequences that render the DNA resistant to digestion with the AluI restriction endonuclease. The DNA methyltransferase responsible for the base modification has previously been designated MarI. From the complete genome sequence of M. arthritidis, we identify Marth_orf138 as a candidate marI gene. Marth_orf138 was cloned in Escherichia coli and its TGA codons converted to TGG. DNA isolated from E. coli cells expressing the modified Marth_orf138 gene was degraded by the AluI nuclease, indicating that Marth_orf138 does not code for MarI. However, the DNA from E. coli was found to have acquired resistance to the restriction endonuclease HhaI. Genomic DNA from M. arthritidis was also found to be resistant to HhaI (recognizes GCGC). The M. arthritidis isoschizomer of the HhaI DNA methyltransferase, coded by Marth_orf138, is designated MarII. Transformation of M. arthritidis was not significantly affected by modification of plasmid at HhaI sites, indicating that the mycoplasma lacks a restriction endonuclease that recognizes GCGC sites.
Association of Mycoplasma arthritidis mitogen with lethal toxicity but not with arthritis in mice. - Infection and immunity
Mycoplasma arthritidis induces an acute to chronic arthritis in rodents. Arthritis induced in mice histologically resembles human rheumatoid arthritis and can be associated with lethal toxicity following systemic injection. The M. arthritidis mitogen (MAM) superantigen has long been implicated as having a role in pathogenesis, but its significance with respect to toxicity and arthritogenicity in mycoplasma-induced disease is unclear. To study the pathogenic significance of MAM, M. arthritidis mutants that overproduced or failed to produce MAM were developed. MAM overproduction and knockout mutants were more and less mitogenic, respectively, than the wild-type strain. The degree of mitogenic activity correlated with lethal toxicity in DBA/2J mice. In contrast, histopathological studies detected no correlation between MAM production and the severity of arthritis induced in DBA/2J and CBA/J mice.
Calreticulin (CALR) mutation in myeloproliferative neoplasms (MPNs). - Stem cell investigation
As a heterogeneous group of disease, myeloproliferative neoplasms (MPNs) have confused hematologists and hematopathologists with their protean clinical presentations and myriads of morphologies. A thought of classifying MPNs based on molecular alterations has gained popularity because there is increasing evidence that molecular or chromosomal alterations have a better correlation with clinical presentation, response to therapies, and prognosis than conventional morphological classification. This type of efforts has been facilitated by the advancement of molecular technologies. A significant number of gene mutations have been identified in MPNs with JAK2 and MPL being the major ones. However, a significant gap is present in that many cases of MPNs do not harbor any of these mutations. This gap is recently filled by the discovery of Calreticulin (CALR) mutation in MPNs without JAK2 or MPL mutation and since then, the clinical and molecular correlation in MPNs has become a hot research topic. There seems to be a fairly consistent correlation between CALR mutation and certain hematological parameters such as a high platelet count and a better prognosis in MPNs with CALR mutation. However, controversies are present regarding the risks of thrombosis, interactions of CALR with other gene mutation, the role of CALR in the pathogenesis, and the optimal treatment strategies. In addition, there are many questions remain to be answered, which all boiled down to the molecular mechanisms by which CALR causes or contributes to MPNs. Here, we summarized current published literatures on CALR mutations in MPNs with an emphasis on the clinical-molecular correlation. We also discussed the controversies and questions remain to be answered.

Map & Directions

940 Sl Young Blvd Oklahoma City, OK 73104
View Directions In Google Maps

Nearby Doctors

711 Sl Young Blvd
Oklahoma City, OK 73104
405 714-4113
1306 North Walnut 1G Ave
Oklahoma City, OK 73104
405 147-7574
1200 Childrens Ave Suite 12400
Oklahoma City, OK 73104
405 714-4407
1200 Childrens Ave Oucp 14000 A2
Oklahoma City, OK 73104
405 714-4417
825 Ne 10Th Street Suite 1300
Oklahoma City, OK 73104
405 712-2663
825 Ne 10Th St Oupb1430
Oklahoma City, OK 73104
405 715-5641
619 Ne 13Th St Dc
Oklahoma City, OK 73104
405 716-6110
701 Ne 10Th St
Oklahoma City, OK 73104
405 805-5550
1200 Everett Dr 7Th Floor North Pavilion
Oklahoma City, OK 73104
405 715-5215