Dr. Elena  Rabinovich  Md image

Dr. Elena Rabinovich Md

4802 10Th Ave Department Of Medicine
Brooklyn NY 11219
718 838-8317
Medical School: Other - Unknown
Accepts Medicare: No
Participates In eRX: No
Participates In PQRS: No
Participates In EHR: No
License #: 217743
NPI: 1366526428
Taxonomy Codes:

Request Appointment Information

Awards & Recognitions

About Us

Practice Philosophy


Medical Malpractice Cases

None Found

Medical Board Sanctions

None Found


None Found


Gold(I) and gold(III) corroles. - Chemistry (Weinheim an der Bergstrasse, Germany)
Corrole complexes with gold(I) and gold(III) were synthesized and their structural, photophysical, and electrochemical properties investigated. This work includes the X-ray crystallography characterization of gold(I) and gold(III) complexes, both chelated by a corrole with fully brominated β-pyrrole carbon atoms. The mononuclear and chiral gold(I) corrole appears to be the first of its kind within the porphyrinoid family, while the most unique property of the gold(III) corrole is that it displays phosphorescence at ambient temperatures.Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thorium 2-pyridylamidinates: synthesis, structure and catalytic activity towards the cyclo-oligomerization of epsilon-caprolactone. - Dalton transactions (Cambridge, England : 2003)
Salt metathesis of ThCl(4).3THF with N,N'-bis(trimethylsilyl)-2-pyridyl-lithium-TMEDA (1) yields bis(N,N'-bis(trimethylsilyl)-2-pyridylamidinate) thorium-chloride (mu-Cl)(2)Li(TMEDA) (2) (60% isolated yield) and tris(N,N'-bis(trimethylsilyl)-2-pyridylamidinate) thorium monochloride (3) (10% isolated yield). The latter compound is the first crystallographically characterized tris(amidinate) thorium complex. The bis pyridyl amidinate thorium (2) displays a unique reactivity towards the dual-site cyclo-oligomerization of epsilon-caprolactone, which produces two fractions of macrocyclic oligo-esters with extremely narrow (1.01-1.06) polydispersity. A mechanism for the dual-site oligomerization reaction is proposed based on kinetic, poisoning, and (1)H NMR studies.
W4 theory for computational thermochemistry: In pursuit of confident sub-kJ/mol predictions. - The Journal of chemical physics
In an attempt to improve on our earlier W3 theory [A. D. Boese et al., J. Chem. Phys. 120, 4129 (2004)] we consider such refinements as more accurate estimates for the contribution of connected quadruple excitations (T4), inclusion of connected quintuple excitations (T5), diagonal Born-Oppenheimer corrections (DBOC), and improved basis set extrapolation procedures. Revised experimental data for validation purposes were obtained from the latest version of the Active Thermochemical Tables thermochemical network. The recent CCSDT(Q) method offers a cost-effective way of estimating T4, but is insufficient by itself if the molecule exhibits some nondynamical correlation. The latter considerably slows down basis set convergence for T4, and anomalous basis set convergence in highly polar systems makes two-point extrapolation procedures unusable. However, we found that the CCSDTQ-CCSDT(Q) difference converges quite rapidly with the basis set, and that the formula 1.10[CCSDT(Q)cc-pVTZ+CCSDTQcc-pVDZ-CCSDT(Q)cc-pVDZ] offers a very reliable as well as fairly cost-effective estimate of the basis set limit T4 contribution. The T5 contribution converges very rapidly with the basis set, and even a simple double-zeta basis set appears to be adequate. The largest T5 contribution found in the present work is on the order of 0.5 kcal/mol (for ozone). DBOCs are significant at the 0.1 kcal/mol level in hydride systems. Post-CCSD(T) contributions to the core-valence correlation energy are only significant at that level in systems with severe nondynamical correlation effects. Based on the accumulated experience, a new computational thermochemistry protocol for first- and second-row main-group systems, to be known as W4 theory, is proposed. Its computational cost is not insurmountably higher than that of the earlier W3 theory, while performance is markedly superior. Our W4 atomization energies for a number of key species are in excellent agreement (better than 0.1 kcal/mol on average, 95% confidence intervals narrower than 1 kJ/mol) with the latest experimental data obtained from Active Thermochemical Tables. Lower-cost variants are proposed: the sequence W1-->W2.2-->W3.2-->W4lite-->W4 is proposed as a converging hierarchy of computational thermochemistry methods. A simple a priori estimate for the importance of post-CCSD(T) correlation contributions (and hence a pessimistic estimate for the error in a W2-type calculation) is proposed.

Map & Directions

4802 10Th Ave Department Of Medicine Brooklyn, NY 11219
View Directions In Google Maps

Nearby Doctors

4802 10Th Ave
Brooklyn, NY 11219
718 836-6000
4802 10Th Ave Department Of Surgery
Brooklyn, NY 11219
718 837-7613
921 49Th St
Brooklyn, NY 11219
718 838-8773
4802 10Th Ave Department Of Ob-Gyn
Brooklyn, NY 11219
718 836-6078
1272 49Th St
Brooklyn, NY 11219
718 381-1919
5110 12Th Ave
Brooklyn, NY 11219
800 753-3243
953 49Th Street 3Rd Floor Professional Building
Brooklyn, NY 11219
718 838-8696
4802 10Th Avenue
Brooklyn, NY 11219
718 836-6000
4802 10Th Ave Cardiology
Brooklyn, NY 11219
718 836-6466