Dr. Vanaja  Penumacha  Md image

Dr. Vanaja Penumacha Md

232 S Woods Mill Rd
Chesterfield MO 63017
314 341-1500
Medical School: Other - Unknown
Accepts Medicare: No
Participates In eRX: No
Participates In PQRS: No
Participates In EHR: No
License #: 2006036877
NPI: 1346386224
Taxonomy Codes:

Request Appointment Information

Awards & Recognitions

About Us

Practice Philosophy


Medical Malpractice Cases

None Found

Medical Board Sanctions

None Found


None Found


Genotypic variability in physiological, biomass and yield response to drought stress in pigeonpea. - Physiology and molecular biology of plants : an international journal of functional plant biology
Three pigeonpea (Cajanus cajan L. Millsp.) genotypes- GT-1, AKP-1 and PRG-158 with varying crop duration, growth habit and flowering pattern were evaluated for variability in their response for drought stress. Drought stress was imposed at initiation of flowering and the observations on biomass and seed yield parameters were recorded at harvest. The magnitude of response of individual component to drought stress was found to be genotype specific. Drought stress significantly decreased photosynthetic rate (PN), transpiration rate (Tr) and relative water content (RWC) in all the genotypes, however the magnitude of reduction differed with genotype. With drought stress, the reduction of PN was highest in GT-1 while reduction in Tr was highest in PRG-158. The genotype AKP-1, accumulated significantly higher concentrations of osmotic solutes especially proline under water deficit stress, this facilitated it to maintain higher relative water content (RWC) and lower malondialdehyde (MDA) content as compared to other genotypes. Drought stress also impacted biomass production and their partitioning to vegetative and reproductive components at harvest. There was significant variability between the genotypes for seed yield under drought stress while it was non-significant under well-watered condition. Drought stress enhanced flower drop and decreased flower to pod conversion resulting in reduced pod number and seed number in PRG-158 and GT-1. The genotype AKP-1 recorded superior performance for seed yield under stress environment due to its ability in maintaining pod and seed number as well as improved test weight (100 seed weight). Under drought stress, significant positive association of seed yield with proline, seed number, pod number and test weight clearly indicating their role in drought tolerance.
Clinical and Genetic Analysis of Fibrodysplasia Ossificans Progressiva: A Case Report and Literature Review. - Journal of clinical and diagnostic research : JCDR
Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disorder characterized by congenital malformation of the great toes and disabling heterotopic ossification in specific anatomic locations with a world wide prevalence of 1 in 2 million population. Nearly 90% of patients with FOP are misdiagnosed and mismanaged. We present a case of a four-year-old boy brought by his parents with the complaints of stiffness of right shoulder, neck and multiple swellings over the upper back noted over the past 4 months. On examination bilateral symmetrical hallux valgus with microdactyly of great toes and multiple bony hard swellings on both the scapulae were noted. Skeletal survey revealed all the classical features of FOP. Mutation of the ACVR1gene on genetic analysis confirmed the diagnosis of FOP. Invasive surgical procedures including biopsy and manipulations for stiff joints were avoided as they strikingly end up in rapid progression of FOP. Congenital hallux valgus with short great toe in a child should be considered as an early diagnostic tool for FOP even before the onset of mass lesions. Genetic analysis for mutation of ACVR1gene is confirmatory. Prevention of injury, medical management of acute painful flare-ups and rehabilitation are the mainstay of treatment.
Age related changes in auditory processes in children aged 6 to 10 years. - International journal of pediatric otorhinolaryngology
The study evaluated age related changes in auditory processing (separation/auditory closure, binaural auditory integration abilities, temporal processing abilities) and higher order cognitive function (auditory memory & sequencing abilities) in children. Additionally, the study aimed to assess the effect of gender on the auditory processes/higher cognitive function as well as ear effect for the monaural tests that were administered.The cross-sectional experimental study evaluated 280 typically developing children aged 6 to 10 years, divided into five age groups. They were evaluated on auditory processes/higher order cognitive functions reported to be frequently affected in children with auditory processing disorders (Speech-in-Noise Test in Indian-English, Dichotic consonant-vowel test, Duration pattern test, & Revised Auditory Memory and Sequencing Test in Indian-English).ANOVA and MANOVA revealed no significant gender effect in all four tests. However, a significant age effect was seen, with the rate at which maturation occurred, varying across the tests.Thus, the findings indicate that different auditory processes have different rates of development. This reflects that the areas responsible for different auditory processes/higher cognitive function do not develop at the same pace.Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Development of taste masked caffeine citrate formulations utilizing hot melt extrusion technology and in vitro-in vivo evaluations. - International journal of pharmaceutics
The objective of this study was to develop caffeine citrate orally disintegrating tablet (ODT) formulations utilizing hot-melt extrusion technology and evaluate the ability of the formulation composition to mask the unpleasant bitter taste of the drug using in vitro and in vivo methods. Ethylcellulose, along with a suitable plasticizer, was used as a polymeric carrier. Pore forming agents were incorporated into the extruded matrix to enhance drug release. A modified screw configuration was applied to improve the extrusion processability and to preserve the crystallinity of the API. The milled extrudates were subjected to dissolution testing in an artificial salivary fluid and investigations using e-tongue, to assess the extent of masking of bitter taste of the API. There was an insignificant amount of drug released from the formulation in the salivary medium while over 80% of drug released within 30 min in 0.1N HCl. ODTs were also developed with the extrudate mixed with mannitol and crospovidone. The quality properties such as friability and disintegration time of the ODTs met the USP specifications. The lead extrudate formulations and the ODTs prepared using this formulation were subjected to human gustatory evaluation. The formulations were found to mask the unpleasant taste of caffeine citrate significantly.Copyright © 2015. Published by Elsevier B.V.
Mechanisms of inflammasome activation: recent advances and novel insights. - Trends in cell biology
Inflammasomes are cytosolic multiprotein platforms assembled in response to invading pathogens and other danger signals. Typically inflammasome complexes contain a sensor protein, an adaptor protein, and a zymogen - procaspase-1. Formation of inflammasome assembly results in processing of inactive procaspase-1 into an active cysteine-protease enzyme, caspase-1, which subsequently activates the proinflammatory cytokines, interleukins IL-1β and IL-18, and induces pyroptosis, a highly-pyrogenic inflammatory form of cell death. Studies over the past year have unveiled exciting new players and regulatory pathways that are involved in traditional inflammasome signaling, some of them even challenging the existing dogma. This review outlines these new insights in inflammasome research and discusses areas that warrant further exploration.Copyright © 2014 Elsevier Ltd. All rights reserved.
Temperature- and CO2-dependent life table parameters of Spodoptera litura (Noctuidae: Lepidoptera) on sunflower and prediction of pest scenarios. - Journal of insect science (Online)
Predicted increase in temperature and atmospheric CO2 concentration will influence the growth of crop plants and phytophagous insects. The present study, conducted at the Central Research Institute for Dryland Agriculture, Hyderabad, India, aimed at (1) construction of life tables at six constant temperatures viz., 20, 25, 27, 30, 33, and 35 ± 0.5 °C for Spodoptera litura (Fabricius) (Noctuidae: Lepidoptera) reared on sunflower (Helianthus annus L.) grown under ambient and elevated CO2 (eCO2) (550 ppm) concentration in open top chambers and (2) prediction of the pest status in near future (NF) and distant future (DF) climate change scenarios at major sunflower growing locations of India. Significantly lower leaf nitrogen, higher carbon and higher relative proportion of carbon to nitrogen (C:N) were observed in sunflower foliage grown under eCO2 over ambient. Feeding trials conducted on sunflower foliage obtained from two CO2 conditions showed that the developmental time of S. litura (Egg to adult) declined with increase in temperature and was more evident at eCO2. Finite (λ) and intrinsic rates of increase (r(m)), net reproductive rate (Ro), mean generation time, (T) and doubling time (DT) of S. litura increased significantly with temperature up to 27-30 °C and declined with further increase in temperature. Reduction of 'T' was observed from maximum value of 58 d at 20 °C to minimum of 24.9 d at 35 °C. The DT of population was higher (5.88 d) at 20 °C and lower (3.05 d) at 30 °C temperature of eCO2. The data on these life table parameters were plotted against temperature and two nonlinear models were developed separately for each of the CO2 conditions for predicting the pest scenarios. The NF and DF scenarios temperature data of four sunflower growing locations in India is based on PRECIS A1B emission scenario. It was predicted that increased 'rm', 'λ', and 'Ro' and reduced 'T' would occur during NF and DF scenario over present period at all locations. The present results indicate that temperature and CO2 are vital in influencing the population growth of S. litura and pest incidence may possibly be higher in the future.© The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.
Actin pedestal formation by enterohemorrhagic Escherichia coli enhances bacterial host cell attachment and concomitant type III translocation. - Infection and immunity
Attachment of enterohemorrhagic Escherichia coli (EHEC) to intestinal epithelial cells is critical for colonization and is associated with localized actin assembly beneath bound bacteria. The formation of these actin "pedestals" is dependent on the translocation of effectors into mammalian cells via a type III secretion system (T3SS). Tir, an effector required for pedestal formation, localizes in the host cell plasma membrane and promotes attachment of bacteria to mammalian cells by binding to the EHEC outer surface protein Intimin. Actin pedestal formation has been shown to foster intestinal colonization by EHEC in some animal models, but the mechanisms responsible for this remain undefined. Investigation of the role of Tir-mediated actin assembly promoting host cell binding is complicated by other, potentially redundant EHEC-encoded binding pathways, so we utilized cell binding assays that specifically detect binding mediated by Tir-Intimin interaction. We also assessed the role of Tir-mediated actin assembly in two-step assays that temporally segregated initial translocation of Tir from subsequent Tir-Intimin interaction, thereby permitting the distinction of effects on translocation from effects on cell attachment. In these experimental systems, we compromised Tir-mediated actin assembly by chemically inhibiting actin assembly or by infecting mammalian cells with EHEC mutants that translocate Tir but are specifically defective in Tir-mediated pedestal formation. We found that an inability of Tir to promote actin assembly resulted in a significant and striking decrease in bacterial binding mediated by Tir and Intimin. Bacterial mutants defective for pedestal formation translocated type III effectors to mammalian cells with reduced efficiency, but the decrease in translocation could be entirely accounted for by the decrease in host cell attachment.Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Biosynthesis and Antimicrobial Activity of Semiconductor Nanoparticles against Oral Pathogens. - Bioinorganic chemistry and applications
Dental care is an essential phenomenon in human health. Oral pathogens can cause severe break which may show the way to serious issues in human disease like blood circulation and coronary disease. In the current study, we demonstrated the synthesis and antimicrobial activity of cadmium sulphide and zinc sulphide nanoparticles against oral pathogens. The process for the synthesis of cadmium sulphide (CdS) and zinc sulphide (ZnS) nanoparticles is fast, novel, and ecofriendly. Formation of cadmium sulphide (CdS) and zinc sulphide (ZnS) nanoparticles was confirmed by surface plasmon spectra using UV-Vis spectrophotometer. The morphology of crystalline phase of nanoparticles was determined from transmission electron microscopy (TEM) and X-ray diffraction (XRD) spectra. The average size of cadmium sulphide (CdS) and zinc sulphide (ZnS) nanoparticles was in the range of 10 nm to 25 nm and 65 nm, respectively, and the observed morphology was spherical. The results indicated that the proteins, which contain amine groups, played a reducing and controlling responsibility during the formation of cadmium sulphide (CdS) and zinc sulphide (ZnS) nanoparticles in the colloidal solution. The antimicrobial activity was assessed against oral pathogens such as Streptococcus sp. Staphylococcus sp. Lactobacillus sp., and Candida albicans and these results confirmed that the sulphide nanoparticles are exhibiting good bactericidal activity.
Degradation of methylene blue using biologically synthesized silver nanoparticles. - Bioinorganic chemistry and applications
Nowadays plant mediated synthesis of nanoparticles has great interest and achievement due to its eco-benign and low time consuming properties. In this study silver nanoparticles were successfully synthesized by using Morinda tinctoria leaf extract under different pH. The aqueous leaf extract was added to silver nitrate solution; the color of the reaction medium was changed from pale yellow to brown and that indicates reduction of silver ions to silver nanoparticles. Thus synthesized silver nanoparticles were characterized by UV-Vis spectrophotometer. Dispersity and morphology was characterized by scanning electron microscope (SEM); crystalline nature and purity of synthesized silver nanoparticles were revealed by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). FTIR spectrum was examined to identify the effective functional molecules responsible for the reduction and stabilization of silver nanoparticles synthesized by leaf extract. The photocatalytic activity of the synthesized silver nanoparticles was examined by degradation of methylene blue under sunlight irradiation. Green synthesized silver nanoparticles were effectively degrading the dye nearly 95% at 72 h of exposure time.
Response of multiple generations of semilooper, Achaea janata feeding on castor to elevated CO2. - Journal of environmental biology / Academy of Environmental Biology, India
The growth, development and consumption of four successive generations of semilooper, Achaea janato reared on castor (Ricinus communis L.) foliage grown under elevated carbon dioxide (550 and 700 parts per million ) concentrations in open top chambers were estimated at Hyderabad, India. Significantly lower leaf nitrogen, higher carbon, higher relative proportion of carbon to nitrogen (C: N) and higher polyphenols expressed in terms of tannic acid equivalents were observed in castor foliage under elevated CO2 levels. Significant influence on life history parameters of A. jonata viz., longer larval duration, increased larval survival rates and differential pupal weights in successive four generations were observed under elevated over ambient CO2 levels. The consumption per larva under elevated CO2 increased from first to fourth generation. An increase in approximate digestibility and relative consumption rate, decreased efficiency of conversion of ingested food and digested food and relative growth rate of the four generations under elevated CO2 levels was noticed. Potential population increase index was lower for successive generations under both elevated CO, over ambient. The present findings indicated that elevated CO2 levels significantly alter the quality of castor foliage resulting in higher consumption and better assimilation by larvae, slower growth and longer time to pupation besides producing less fecund adults over generations.

Map & Directions

232 S Woods Mill Rd Chesterfield, MO 63017
View Directions In Google Maps

Nearby Doctors

232 S Woods Mill Rd
Chesterfield, MO 63017
314 056-6917
232 S Woods Mill Rd St Lukes Hospital Radiology
Chesterfield, MO 63017
314 341-1500
232 S Woods Mill Rd 330 East
Chesterfield, MO 63017
314 056-6737
2319 Westpar Dr
Chesterfield, MO 63017
636 075-5800
226 S Woods Mill Rd Suite 49 W
Chesterfield, MO 63017
314 341-1211
603 Claymont Estates Dr
Chesterfield, MO 63017
636 567-7878
14378 Woodlake Dr
Chesterfield, MO 63017
314 767-7750
16216 Baxter Rd Suite 399
Chesterfield, MO 63017
636 329-9188