Docality.com Logo
 
Dr. Philip  Matich   image

Dr. Philip Matich

4316 Capac Rd
Mussey MI 48014
810 954-4375
Medical School: Other - Unknown
Accepts Medicare: No
Participates In eRX: No
Participates In PQRS: No
Participates In EHR: No
License #: PM406642
NPI: 1275734394
Taxonomy Codes:
207Q00000X

Request Appointment Information

Awards & Recognitions

About Us

Practice Philosophy

Conditions

Medical Malpractice Cases

None Found

Medical Board Sanctions

None Found

Referrals

None Found

Publications

Individual variation in ontogenetic niche shifts in habitat use and movement patterns of a large estuarine predator (Carcharhinus leucas). - Oecologia
Ontogenetic niche shifts are common among animals, yet most studies only investigate niche shifts at the population level, which may overlook considerable differences among individuals in the timing and dynamics of these shifts. Such divergent behaviors within size-/age-classes have important implications for the roles a population-and specific age-classes-play in their respective ecosystem(s). Using acoustic telemetry, we tracked the movements of juvenile bull sharks in the Shark River Estuary of Everglades National Park, Florida, and found that sharks increased their use of marine microhabitats with age to take advantage of more abundant resources, but continued to use freshwater and estuarine microhabitats as refuges from marine predators. Within this population-level ontogenetic niche shift, however, movement patterns varied among individual sharks, with 47 % of sharks exhibiting condition-dependent habitat use and 53 % appearing risk-averse regardless of body condition. Among sharks older than age 0, fifty percent made regular movements between adjacent regions of the estuary, while the other half made less predictable movements that often featured long-term residence in specific regions. Individual differences were apparently shaped by both intrinsic and extrinsic factors, including individual responses to food-risk trade-offs and body condition. These differences appear to develop early in the lives of bull sharks, and persist throughout their residencies in nursery habitats. The widespread occurrence of intraspecific variation in behavior among mobile taxa suggests it is important in shaping population dynamics of at least some species, and elucidating the contexts and timing in which it develops and persists is important for understanding its role within communities.
Multi-tissue stable isotope analysis and acoustic telemetry reveal seasonal variability in the trophic interactions of juvenile bull sharks in a coastal estuary. - The Journal of animal ecology
Understanding how natural and anthropogenic drivers affect extant food webs is critical to predicting the impacts of climate change and habitat alterations on ecosystem dynamics. In the Florida Everglades, seasonal reductions in freshwater flow and precipitation lead to annual migrations of aquatic taxa from marsh habitats to deep-water refugia in estuaries. The timing and intensity of freshwater reductions, however, will be modified by ongoing ecosystem restoration and predicted climate change. Understanding the importance of seasonally pulsed resources to predators is critical to predicting the impacts of management and climate change on their populations. As with many large predators, however, it is difficult to determine to what extent predators like bull sharks (Carcharhinus leucas) in the coastal Everglades make use of prey pulses currently. We used passive acoustic telemetry to determine whether shark movements responded to the pulse of marsh prey. To investigate the possibility that sharks fed on marsh prey, we modelled the predicted dynamics of stable isotope values in bull shark blood and plasma under different assumptions of temporal variability in shark diets and physiological dynamics of tissue turnover and isotopic discrimination. Bull sharks increased their use of upstream channels during the late dry season, and although our previous work shows long-term specialization in the diets of sharks, stable isotope values suggested that some individuals adjusted their diets to take advantage of prey entering the system from the marsh, and as such this may be an important resource for the nursery. Restoration efforts are predicted to increase hydroperiods and marsh water levels, likely shifting the timing, duration and intensity of prey pulses, which could have negative consequences for the bull shark population and/or induce shifts in behaviour. Understanding the factors influencing the propensity to specialize or adopt more flexible trophic interactions will be an important step in fully understanding the ecological role of predators and how ecological roles may vary with environmental and anthropogenic changes.© 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
Applying stable isotopes to examine food-web structure: an overview of analytical tools. - Biological reviews of the Cambridge Philosophical Society
Stable isotope analysis has emerged as one of the primary means for examining the structure and dynamics of food webs, and numerous analytical approaches are now commonly used in the field. Techniques range from simple, qualitative inferences based on the isotopic niche, to Bayesian mixing models that can be used to characterize food-web structure at multiple hierarchical levels. We provide a comprehensive review of these techniques, and thus a single reference source to help identify the most useful approaches to apply to a given data set. We structure the review around four general questions: (1) what is the trophic position of an organism in a food web?; (2) which resource pools support consumers?; (3) what additional information does relative position of consumers in isotopic space reveal about food-web structure?; and (4) what is the degree of trophic variability at the intrapopulation level? For each general question, we detail different approaches that have been applied, discussing the strengths and weaknesses of each. We conclude with a set of suggestions that transcend individual analytical approaches, and provide guidance for future applications in the field.© 2011 The Authors. Biological Reviews © 2011 Cambridge Philosophical Society.
Contrasting patterns of individual specialization and trophic coupling in two marine apex predators. - The Journal of animal ecology
1. Apex predators are often assumed to be dietary generalists and, by feeding on prey from multiple basal nutrient sources, serve to couple discrete food webs. But there is increasing evidence that individual level dietary specialization may be common in many species, and this has not been investigated for many marine apex predators. 2. Because of their position at or near the top of many marine food webs, and the possibility that they can affect populations of their prey and induce trophic cascades, it is important to understand patterns of dietary specialization in shark populations. 3. Stable isotope values from body tissues with different turnover rates were used to quantify patterns of individual specialization in two species of 'generalist' sharks (bull sharks, Carcharhinus leucas, and tiger sharks, Galeocerdo cuvier). 4. Despite wide population-level isotopic niche breadths in both species, isotopic values of individual tiger sharks varied across tissues with different turnover rates. The population niche breadth was explained mostly by variation within individuals suggesting tiger sharks are true generalists. In contrast, isotope values of individual bull sharks were stable through time and their wide population level niche breadth was explained by variation among specialist individuals. 5. Relative resource abundance and spatial variation in food-predation risk tradeoffs may explain the differences in patterns of specialization between shark species. 6. The differences in individual dietary specialization between tiger sharks and bull sharks results in different functional roles in coupling or compartmentalizing distinct food webs. 7. Individual specialization may be an important feature of trophic dynamics of highly mobile marine top predators and should be explicitly considered in studies of marine food webs and the ecological role of top predators.© 2010 The Authors. Journal compilation © 2010 British Ecological Society.

Map & Directions

4316 Capac Rd Mussey, MI 48014
View Directions In Google Maps

Nearby Doctors

4309 Capac Rd
Mussey, MI 48014
810 952-2100
14960 E Park St
Capac, MI 48014
810 951-1610
117 S Main St
Capac, MI 48014
810 954-4840
117 S Main St
Capac, MI 48014
810 954-4840
116 N Main St
Capac, MI 48014
810 952-2679
14960 E Park St
Capac, MI 48014
810 954-4343