Dr. Lewis  Heller  Md image

Dr. Lewis Heller Md

11120 N Tatum Blvd Suite 101
Phoenix AZ 85028
602 024-4000
Medical School: Other - Unknown
Accepts Medicare: No
Participates In eRX: No
Participates In PQRS: No
Participates In EHR: No
License #: 14873
NPI: 1255652319
Taxonomy Codes:

Request Appointment Information

Awards & Recognitions

About Us

Practice Philosophy


Medical Malpractice Cases

None Found

Medical Board Sanctions

None Found


None Found


Elevated basal serum tryptase identifies a multisystem disorder associated with increased TPSAB1 copy number. - Nature genetics
Elevated basal serum tryptase levels are present in 4-6% of the general population, but the cause and relevance of such increases are unknown. Previously, we described subjects with dominantly inherited elevated basal serum tryptase levels associated with multisystem complaints including cutaneous flushing and pruritus, dysautonomia, functional gastrointestinal symptoms, chronic pain, and connective tissue abnormalities, including joint hypermobility. Here we report the identification of germline duplications and triplications in the TPSAB1 gene encoding α-tryptase that segregate with inherited increases in basal serum tryptase levels in 35 families presenting with associated multisystem complaints. Individuals harboring alleles encoding three copies of α-tryptase had higher basal serum levels of tryptase and were more symptomatic than those with alleles encoding two copies, suggesting a gene-dose effect. Further, we found in two additional cohorts (172 individuals) that elevated basal serum tryptase levels were exclusively associated with duplication of α-tryptase-encoding sequence in TPSAB1, and affected individuals reported symptom complexes seen in our initial familial cohort. Thus, our findings link duplications in TPSAB1 with irritable bowel syndrome, cutaneous complaints, connective tissue abnormalities, and dysautonomia.
First-in-Human Imaging with 89Zr-Df-IAB2M Anti-PSMA Minibody in Patients with Metastatic Prostate Cancer: Pharmacokinetics, Biodistribution, Dosimetry, and Lesion Uptake. - Journal of nuclear medicine : official publication, Society of Nuclear Medicine
We conducted a phase I dose-escalation study with (89)Zr-desferrioxamine-IAB2M ((89)Zr-IAB2M), an anti-prostate-specific membrane antigen minibody, in patients with metastatic prostate cancer.Patients received 185 MBq (5 mCi) of (89)Zr-IAB2M and Df-IAB2M at total mass doses of 10 (n = 6), 20 (n = 6), and 50 mg (n = 6). Whole-body and serum clearance, normal-organ and lesion uptake, and radiation absorbed dose were estimated, and the effect of mass escalation was analyzed.Eighteen patients were injected and scanned without side effects. Whole-body clearance was monoexponential, with a median biologic half-life of 215 h, whereas serum clearance showed biexponential kinetics, with a median biologic half-life of 3.7 (12.3%/L) and 33.8 h (17.9%/L). The radiation absorbed dose estimates were 1.67, 1.36, and 0.32 mGy/MBq to liver, kidney, and marrow, respectively, with an effective dose of 0.41 mSv/MBq (1.5 rem/mCi). Both skeletal and nodal lesions were detected with (89)Zr-IAB2M, most visualized by 48-h imaging.(89)Zr-IAB2M is safe and demonstrates favorable biodistribution and kinetics for targeting metastatic prostate cancer. Imaging with 10 mg of minibody mass provides optimal biodistribution, and imaging at 48 h after injection provides good lesion visualization. Assessment of lesion targeting is being studied in detail in an expansion cohort.© 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Jet energy measurement and its systematic uncertainty in proton-proton collisions at [Formula: see text] TeV with the ATLAS detector. - The European physical journal. C, Particles and fields
The jet energy scale (JES) and its systematic uncertainty are determined for jets measured with the ATLAS detector using proton-proton collision data with a centre-of-mass energy of [Formula: see text] TeV corresponding to an integrated luminosity of [Formula: see text][Formula: see text]. Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells using the anti-[Formula: see text] algorithm with distance parameters [Formula: see text] or [Formula: see text], and are calibrated using MC simulations. A residual JES correction is applied to account for differences between data and MC simulations. This correction and its systematic uncertainty are estimated using a combination of in situ techniques exploiting the transverse momentum balance between a jet and a reference object such as a photon or a [Formula: see text] boson, for [Formula: see text] and pseudorapidities [Formula: see text]. The effect of multiple proton-proton interactions is corrected for, and an uncertainty is evaluated using in situ techniques. The smallest JES uncertainty of less than 1 % is found in the central calorimeter region ([Formula: see text]) for jets with [Formula: see text]. For central jets at lower [Formula: see text], the uncertainty is about 3 %. A consistent JES estimate is found using measurements of the calorimeter response of single hadrons in proton-proton collisions and test-beam data, which also provide the estimate for [Formula: see text] TeV. The calibration of forward jets is derived from dijet [Formula: see text] balance measurements. The resulting uncertainty reaches its largest value of 6 % for low-[Formula: see text] jets at [Formula: see text]. Additional JES uncertainties due to specific event topologies, such as close-by jets or selections of event samples with an enhanced content of jets originating from light quarks or gluons, are also discussed. The magnitude of these uncertainties depends on the event sample used in a given physics analysis, but typically amounts to 0.5-3 %.
Two-particle Bose-Einstein correlations in pp collisions at [Formula: see text] 0.9 and 7 TeV measured with the ATLAS detector. - The European physical journal. C, Particles and fields
The paper presents studies of Bose-Einstein Correlations (BEC) for pairs of like-sign charged particles measured in the kinematic range [Formula: see text] 100 MeV and [Formula: see text] 2.5 in proton collisions at centre-of-mass energies of 0.9 and 7 TeV with the ATLAS detector at the CERN Large Hadron Collider. The integrated luminosities are approximately 7 [Formula: see text]b[Formula: see text], 190 [Formula: see text]b[Formula: see text] and 12.4 nb[Formula: see text] for 0.9 TeV, 7 TeV minimum-bias and 7 TeV high-multiplicity data samples, respectively. The multiplicity dependence of the BEC parameters characterizing the correlation strength and the correlation source size are investigated for charged-particle multiplicities of up to 240. A saturation effect in the multiplicity dependence of the correlation source size parameter is observed using the high-multiplicity 7 TeV data sample. The dependence of the BEC parameters on the average transverse momentum of the particle pair is also investigated.
Evidence of Wγγ Production in pp Collisions at sqrt[s]=8  TeV and Limits on Anomalous Quartic Gauge Couplings with the ATLAS Detector. - Physical review letters
This Letter reports evidence of triple gauge boson production pp→W(ℓν)γγ+X, which is accessible for the first time with the 8 TeV LHC data set. The fiducial cross section for this process is measured in a data sample corresponding to an integrated luminosity of 20.3  fb^{-1}, collected by the ATLAS detector in 2012. Events are selected using the W boson decay to eν or μν as well as requiring two isolated photons. The measured cross section is used to set limits on anomalous quartic gauge couplings in the high diphoton mass region.
Identification and energy calibration of hadronically decaying tau leptons with the ATLAS experiment in pp collisions at [Formula: see text][Formula: see text]. - The European physical journal. C, Particles and fields
This paper describes the trigger and offline reconstruction, identification and energy calibration algorithms for hadronic decays of tau leptons employed for the data collected from pp collisions in 2012 with the ATLAS detector at the LHC center-of-mass energy [Formula: see text] [Formula: see text]. The performance of these algorithms is measured in most cases with [Formula: see text] decays to tau leptons using the full 2012 dataset, corresponding to an integrated luminosity of 20.3 fb[Formula: see text]. An uncertainty on the offline reconstructed tau energy scale of 2-4 %, depending on transverse energy and pseudorapidity, is achieved using two independent methods. The offline tau identification efficiency is measured with a precision of 2.5 % for hadronically decaying tau leptons with one associated track, and of 4 % for the case of three associated tracks, inclusive in pseudorapidity and for a visible transverse energy greater than 20 [Formula: see text]. For hadronic tau lepton decays selected by offline algorithms, the tau trigger identification efficiency is measured with a precision of 2-8 %, depending on the transverse energy. The performance of the tau algorithms, both offline and at the trigger level, is found to be stable with respect to the number of concurrent proton-proton interactions and has supported a variety of physics results using hadronically decaying tau leptons at ATLAS.
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at [Formula: see text]TeV with the ATLAS detector. - The European physical journal. C, Particles and fields
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb[Formula: see text] of [Formula: see text] TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with [Formula: see text] GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between [Formula: see text] GeV and [Formula: see text] GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presented.
Detecting cancer biomarkers in blood: challenges for new molecular diagnostic and point-of-care tests using cell-free nucleic acids. - Expert review of molecular diagnostics
As we move into the era of individualized cancer treatment, the need for more sophisticated cancer diagnostics has emerged. Cell-free (cf) nucleic acids (cf-DNA, cf-RNA) and other cellular nanoparticulates are now considered important and selective biomarkers. There is great hope that blood-borne cf-nucleic acids can be used for 'liquid biopsies', replacing more invasive tissue biopsies to analyze cancer mutations and monitor therapy. Conventional techniques for cf-nucleic acid biomarker isolation from blood are generally time-consuming, complicated and expensive. They require relatively large blood samples, which must be processed to serum or plasma before isolation of biomarkers can proceed. Such cumbersome sample preparation also limits the widespread use of powerful, downstream genomic analyses, including PCR and DNA sequencing. These limitations also preclude rapid, point-of-care diagnostic applications. Thus, new technologies that allow rapid isolation of biomarkers directly from blood will permit seamless sample-to-answer solutions that enable next-generation point-of-care molecular diagnostics.
A Phase I/II Study for Analytic Validation of 89Zr-J591 ImmunoPET as a Molecular Imaging Agent for Metastatic Prostate Cancer. - Clinical cancer research : an official journal of the American Association for Cancer Research
Standard imaging for assessing osseous metastases in advanced prostate cancer remains focused on altered bone metabolism and is inadequate for diagnostic, prognostic, or predictive purposes. We performed a first-in-human phase I/II study of (89)Zr-DFO-huJ591 ((89)Zr-J591) PET/CT immunoscintigraphy to assess performance characteristics for detecting metastases compared with conventional imaging modalities (CIM) and pathology.Fifty patients with progressive metastatic castration-resistant prostate cancers were injected with 5 mCi of (89)Zr-J591. Whole-body PET/CT scans were obtained, and images were analyzed for tumor visualization. Comparison was made to contemporaneously obtained bone scintigraphy and cross-sectional imaging on a lesion-by-lesion basis and with biopsies of metastatic sites.Median standardized uptake value for (89)Zr-J591-positive bone lesions (n = 491) was 8.9 and for soft-tissue lesions (n = 90), it was 4.8 (P < 0.00003). (89)Zr-J591 detected 491 osseous sites compared with 339 by MDP and 90 soft-tissue lesions compared with 124 by computed tomography (CT). Compared with all CIMs combined, (89)Zr-J591 detected an additional 99 osseous sites. Forty-six lesions (21 bone and 25 soft tissue) were biopsied in 34 patients; 18 of 19 (89)Zr-J591-positive osseous sites and 14 of 16 (89)Zr-J591-positive soft tissue sites were positive for prostate cancer. The overall accuracy of (89)Zr-J591 was 95.2% (20 of 21) for osseous lesions and 60% (15 of 25) for soft-tissue lesions.(89)Zr-J591 imaging demonstrated superior targeting of bone lesions relative to CIMs. Targeting soft-tissue lesions was less optimal, although (89)Zr-J591 had similar accuracy as individual CIMs. This study will provide benchmark data for comparing performance of proposed prostate-specific membrane antigen (PSMA) targeting agents for prostate cancer.©2015 American Association for Cancer Research.
Observation and measurements of the production of prompt and non-prompt [Formula: see text] mesons in association with a [Formula: see text] boson in [Formula: see text] collisions at [Formula: see text] with the ATLAS detector. - The European physical journal. C, Particles and fields
The production of a [Formula: see text] boson in association with a [Formula: see text] meson in proton-proton collisions probes the production mechanisms of quarkonium and heavy flavour in association with vector bosons, and allows studies of multiple parton scattering. Using [Formula: see text] of data collected with the ATLAS experiment at the LHC in [Formula: see text] collisions at [Formula: see text], the first measurement of associated [Formula: see text] production is presented for both prompt and non-prompt [Formula: see text] production, with both signatures having a significance in excess of [Formula: see text]. The inclusive production cross-sections for [Formula: see text] boson production (analysed in [Formula: see text] or [Formula: see text] decay modes) in association with prompt and non-prompt [Formula: see text] are measured relative to the inclusive production rate of [Formula: see text] bosons in the same fiducial volume to be [Formula: see text] and [Formula: see text] respectively. Normalised differential production cross-section ratios are also determined as a function of the [Formula: see text] transverse momentum. The fraction of signal events arising from single and double parton scattering is estimated, and a lower limit of [Formula: see text] at [Formula: see text] confidence level is placed on the effective cross-section regulating double parton interactions.

Map & Directions

11120 N Tatum Blvd Suite 101 Phoenix, AZ 85028
View Directions In Google Maps

Nearby Doctors

3349 E Mescal St
Phoenix, AZ 85028
602 998-8553
11130 N Tatum Blvd #100
Phoenix, AZ 85028
602 941-1817
11130 N Tatum Blvd Suite 100
Phoenix, AZ 85028
602 941-1817
11209 N Tatum Blvd Suite # 110
Phoenix, AZ 85028
602 488-8002
11209 N Tatum Blvd Suite #110
Phoenix, AZ 85028
602 488-8002
11020 N Tatum Blvd #100
Phx, AZ 85028
602 960-0654
11209 N Tatum Blvd Suite 260
Phoenix, AZ 85028
602 946-6800
4614 E Shea Blvd Suite D 160
Phoenix, AZ 85028
602 858-8500
11260 N Tatum Blvd Suite 140
Phoenix, AZ 85028
480 071-1022
11209 N Tatum Blvd Suite 260
Phoenix, AZ 85028
602 946-6800