Dr. Joseph  Peters  Phd image

Dr. Joseph Peters Phd

219 3Rd St
Beaver PA 15009
724 759-9150
Medical School: Other - Unknown
Accepts Medicare: No
Participates In eRX: No
Participates In PQRS: No
Participates In EHR: No
License #: PS002256L
NPI: 1164417382
Taxonomy Codes:

Request Appointment Information

Awards & Recognitions

About Us

Practice Philosophy


Medical Malpractice Cases

None Found

Medical Board Sanctions

None Found


None Found


Long-term exposure to fluoxetine reduces growth and reproductive potential in the dominant rocky intertidal mussel, Mytilus californianus. - The Science of the total environment
Environmental stressors shape community composition and ecosystem functioning. Contaminants such as pharmaceuticals are of increasing concern as an environmental stressor due to their persistence in surface waters worldwide. Limited attention has been paid to the effects of pharmaceuticals on marine life, despite widespread detection of these contaminants in the marine environment. Of the existing studies, the majority assess the negative effects of pharmaceuticals over an exposure period of 30 days or less and focus on cellular and subcellular biomarkers. Longer studies are required to determine if chronic contaminant exposure poses risks to marine life at environmentally relevant concentrations; and examination of whole organism effects are necessary to identify potential community-level consequences in estuarine and marine ecosystems. We conducted a long-term exposure study (107 days) with the anti-depressant pharmaceutical, fluoxetine (the active constituent in Prozac®) to determine whether minimal concentrations affected whole organism metrics in the California mussel, Mytilus californianus. We measured algal clearance rates, mussel growth, and the gonadosomatic index, a measure of reproductive health. We found that fluoxetine negatively affects all measured characteristics, however many effects were mediated by length of exposure. Our results fill an important data gap, highlighting organism-level effects of chronic exposure periods; such data more explicitly identify the overall impacts of pharmaceuticals and other contaminants on marine communities and ecosystems.Copyright © 2015 Elsevier B.V. All rights reserved.
Conformational toggling controls target site choice for the heteromeric transposase element Tn7. - Nucleic acids research
The bacterial transposon Tn7 facilitates horizontal transfer by directing transposition into actively replicating DNA with the element-encoded protein TnsE. Structural analysis of the C-terminal domain of wild-type TnsE identified a novel protein fold including a central V-shaped loop that toggles between two distinct conformations. The structure of a robust TnsE gain-of-activity variant has this loop locked in a single conformation, suggesting that conformational flexibility regulates TnsE activity. Structure-based analysis of a series of TnsE mutants relates transposition activity to DNA binding stability. Wild-type TnsE appears to naturally form an unstable complex with a target DNA, whereas mutant combinations required for large changes in transposition frequency and targeting stabilized this interaction. Collectively, our work unveils a unique structural proofreading mechanism where toggling between two conformations regulates target commitment by limiting the stability of target DNA engagement until an appropriate insertion site is identified.© The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Reefscapes of fear: predation risk and reef hetero-geneity interact to shape herbivore foraging behaviour. - The Journal of animal ecology
Predators can exert strong direct and indirect effects on ecological communities by intimidating their prey. The nature of predation risk effects is often context dependent, but in some ecosystems these contingencies are often overlooked. Risk effects are often not uniform across landscapes or among species. Indeed, they can vary widely across gradients of habitat complexity and with different prey escape tactics. These context dependencies may be especially important for ecosystems such as coral reefs that vary widely in habitat complexity and have species-rich predator and prey communities. With field experiments using predator decoys of the black grouper (Mycteroperca bonaci), we investigated how reef complexity interacts with predation risk to affect the foraging behaviour and herbivory rates of large herbivorous fishes (e.g. parrotfishes and surgeonfishes) across four coral reefs in the Florida Keys (USA). In both high and low complexity areas of the reef, we measured how herbivory changed with increasing distance from the predator decoy to examine how herbivorous fishes reconcile the conflicting demands of avoiding predation vs. foraging within a reefscape context. We show that with increasing risk, herbivorous fishes consumed dramatically less food (ca. 90%) but fed at a faster rate when they did feed (ca. 26%). Furthermore, we show that fishes foraging closest to the predator decoy were 40% smaller than those that foraged at further distances. Thus, smaller individuals showed muted response to predation risk compared to their larger counterparts, potentially due to their decreased risk to predation or lower reproductive value (i.e. the asset protection principle). Habitat heterogeneity mediated risk effects differently for different species of herbivores, with predation risk more strongly suppressing herbivore feeding in more complex areas and for individuals at higher risk of predation. Predators appear to create a reefscape of fear that changes the size structure of herbivores towards smaller individuals, increases individual feeding rates, but suppresses overall amounts of primary producers consumed, potentially altering patterns of herbivory, an ecosystem process critical for healthy coral reefs.© 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Tn7. - Microbiology spectrum
The bacterial transposon Tn7 is distinguished by the levels of control it displays over transposition and its capacity to utilize different kinds of target sites. Transposition is carried out using five transposon-encoded proteins, TnsA, TnsB, TnsC, TnsD, and TnsE, which facilitate transfer of the element while minimizing the chances of inactivating host genes by using two pathways of transposition. One of these pathways utilizes TnsD, which targets transposition into a single site found in bacteria (attTn7), and a second utilizes TnsE, which preferentially directs transposition into plasmids capable of moving between bacteria. Control of transposition involves a heteromeric transposase that consists of two proteins, TnsA and TnsB, and a regulator protein TnsC. Tn7 also has the ability to inhibit transposition into a region already occupied by the element in a process called target immunity. Considerable information is available about the functional interactions of the Tn7 proteins and many of the protein-DNA complexes involved in transposition. Tn7-like elements that encode homologs of all five of the proteins found in Tn7 are common in diverse bacteria, but a newly appreciated larger family of elements appears to use the same core TnsA, TnsB, and TnsC proteins with other putative target site selector proteins allowing different targeting pathways.
Increased Endoplasmic Reticulum Stress in Human Glaucomatous Trabecular Meshwork Cells and Tissues. - Investigative ophthalmology & visual science
Primary open-angle glaucoma (POAG) is the most common form of glaucoma and is accompanied by elevated intraocular pressure (IOP) resulting from increased aqueous humor outflow resistance through the trabecular meshwork (TM). The pathological mechanisms underlying increased outflow resistance have not been fully delineated. We recently demonstrated that chronic endoplasmic reticulum (ER) stress in the TM is associated with ocular hypertension in mouse models of glaucoma. The purpose of this study was to determine whether ER stress is also increased in human glaucomatous TM cells and tissues.Endoplasmic reticulum stress markers including GRP78, GRP94, and C/EBP homologous protein (CHOP) were examined by immunohistochemistry in the TM of age-matched normal (n = 18) and open-angle glaucoma donors (n = 18). GRP78, GRP94, activating transcription factor (ATF)-4, endoplasmic oxidoreductin-1alpha (ERO-1α), phosphorylated eukaryotic translation initiation factor 2α (EIF-2α), and CHOP were examined by Western blot analysis in TM tissue lysates from age-matched normal (n = 4) and POAG donors (n = 5). In addition, ER stress markers were examined in primary TM cells isolated from normal (n = 4 NTM) and glaucoma (n = 4 GTM) human donors.Immunohistochemical analysis demonstrated a significant increase in GRP78 and GRP94 in the glaucomatous TM (n = 18) compared to normal TM (P < 0.0001, n = 18). Interestingly, there was minimum CHOP immunostaining observed in normal TM tissues. However, there was a 3-fold increase in CHOP levels in the glaucomatous TM (P < 0.0001; n = 18), indicating the presence of chronic ER stress in the glaucomatous TM. Western blot analysis of TM tissue lysates also demonstrated increased ER stress markers in the glaucomatous TM tissues including GRP78, GRP94, ATF-4, ERO-1α, and CHOP. Densitometric analysis of Western blots showed a significant increase in ATF-4, ERO-1α, and CHOP expression in the glaucomatous TM (n = 5) compared to age-matched normal TM (n = 4). In addition, primary TM cells obtained from glaucoma donors demonstrated increased ER stress markers including increased GRP78, GRP94, ATF-4, ERO-1α, and CHOP compared to normal TM cells. However, glaucomatous TM cells did not show splicing of XBP-1, a marker of unfolded protein response pathway.These studies indicate the presence of chronic ER stress in human glaucomatous TM tissues and cells and further suggest that ER stress pathway may provide a novel target for developing disease-modifying glaucoma treatments.
Vulnerabilities on the lagging-strand template: opportunities for mobile elements. - Annual review of genetics
Mobile genetic elements have the ability to move between positions in a genome. Some of these elements are capable of targeting one of the template strands during DNA replication. Examples found in bacteria include (a) Red recombination mediated by bacteriophage λ, (b) integration of group II mobile introns that reverse splice and reverse transcribe into DNA, (c) HUH endonuclease elements that move as single-stranded DNA, and (d) Tn7, a DNA cut-and-paste transposon that uses a target-site-selecting protein to target transposition into certain forms of DNA replication. In all of these examples, the lagging-strand template appears to be targeted using a variety of features specific to this strand. These features appear especially available in certain situations, such as when replication forks stall or collapse. In this review, we address the idea that features specific to the lagging-strand template represent vulnerabilities that are capitalized on by mobile genetic elements.
Heteromeric transposase elements: generators of genomic islands across diverse bacteria. - Molecular microbiology
Horizontally acquired genetic information in bacterial chromosomes accumulates in blocks termed genomic islands. Tn7-like transposons form genomic islands at a programmed insertion site in bacterial chromosomes, attTn7. Transposition involves five transposon-encoded genes (tnsABCDE) including an atypical heteromeric transposase. One transposase subunit, TnsB, is from the large family of bacterial transposases, the second, TnsA, is related to endonucleases. A regulator protein, TnsC, functions with different target site selecting proteins to recognize different targets. TnsD directs transposition into attTn7, while TnsE encourages horizontal transmission by targeting mobile plasmids. Recent work suggests that distantly related elements with heteromeric transposases exist with alternate targeting pathways that also facilitate the formation of genomic islands. Tn6230 and related elements can be found at a single position in a gene of unknown function (yhiN) in various bacteria as well as in mobile plasmids. Another group we term Tn6022-like elements form pathogenicity islands in the Acinetobacter baumannii comM gene. We find that Tn6022-like elements also appear to have an uncharacterized mechanism for provoking internal transposition and deletion events that serve as a conduit for evolving new elements. As a group, heteromeric transposase elements utilize diverse target site selection mechanisms adapted to the spread and rearrangement of genomic islands.© 2014 John Wiley & Sons Ltd.
Evolutionary dynamics of the accessory genome of Listeria monocytogenes. - PloS one
Listeria monocytogenes, a foodborne bacterial pathogen, is comprised of four phylogenetic lineages that vary with regard to their serotypes and distribution among sources. In order to characterize lineage-specific genomic diversity within L. monocytogenes, we sequenced the genomes of eight strains from several lineages and serotypes, and characterized the accessory genome, which was hypothesized to contribute to phenotypic differences across lineages. The eight L. monocytogenes genomes sequenced range in size from 2.85-3.14 Mb, encode 2,822-3,187 genes, and include the first publicly available sequenced representatives of serotypes 1/2c, 3a and 4c. Mapping of the distribution of accessory genes revealed two distinct regions of the L. monocytogenes chromosome: an accessory-rich region in the first 65° adjacent to the origin of replication and a more stable region in the remaining 295°. This pattern of genome organization is distinct from that of related bacteria Staphylococcus aureus and Bacillus cereus. The accessory genome of all lineages is enriched for cell surface-related genes and phosphotransferase systems, and transcriptional regulators, highlighting the selective pressures faced by contemporary strains from their hosts, other microbes, and their environment. Phylogenetic analysis of O-antigen genes and gene clusters predicts that serotype 4 was ancestral in L. monocytogenes and serotype 1/2 associated gene clusters were putatively introduced through horizontal gene transfer in the ancestral population of L. monocytogenes lineage I and II.
Identification and characterization of novel Salmonella mobile elements involved in the dissemination of genes linked to virulence and transmission. - PloS one
The genetic diversity represented by >2,500 different Salmonella serovars provides a yet largely uncharacterized reservoir of mobile elements that can contribute to the frequent emergence of new pathogenic strains of this important zoonotic pathogen. Currently, our understanding of Salmonella mobile elements is skewed by the fact that most studies have focused on highly virulent or common serovars. To gain a more global picture of mobile elements in Salmonella, we used prediction algorithms to screen for mobile elements in 16 sequenced Salmonella genomes representing serovars for which no prior genome scale mobile element data were available. From these results, selected mobile elements underwent further analyses in the form of validation studies, comparative analyses, and PCR-based population screens. Through this analysis we identified a novel plasmid that has two cointegrated replicons (IncI1-IncFIB); this plasmid type was found in four genomes representing different Salmonella serovars and contained a virulence gene array that had not been previously identified. A Salmonella Montevideo isolate contained an IncHI and an IncN2 plasmid, which both encoded antimicrobial resistance genes. We also identified two novel genomic islands (SGI2 and SGI3), and 42 prophages with mosaic architecture, seven of them harboring known virulence genes. Finally, we identified a novel integrative conjugative element (ICE) encoding a type IVb pilus operon in three non-typhoidal Salmonella serovars. Our analyses not only identified a considerable number of mobile elements that have not been previously reported in Salmonella, but also found evidence that these elements facilitate transfer of genes that were previously thought to be limited in their distribution among Salmonella serovars. The abundance of mobile elements encoding pathogenic properties may facilitate the emergence of strains with novel combinations of pathogenic traits.
Topical ocular sodium 4-phenylbutyrate rescues glaucoma in a myocilin mouse model of primary open-angle glaucoma. - Investigative ophthalmology & visual science
Mutations in the myocilin gene (MYOC) are the most common known genetic cause of primary open-angle glaucoma (POAG). The purpose of this study was to determine whether topical ocular sodium 4-phenylbutyrate (PBA) treatment rescues glaucoma phenotypes in a mouse model of myocilin-associated glaucoma (Tg-MYOC(Y437H) mice).Tg-MYOC(Y437H) mice were treated with PBA eye drops (n = 10) or sterile PBS (n = 8) twice daily for 5 months. Long-term safety and effectiveness of topical PBA (0.2%) on glaucoma phenotypes were examined by measuring intraocular pressure (IOP) and pattern ERG (PERG), performing slit lamp evaluation of the anterior chamber, analyzing histologic sections of the anterior segment, and comparing myocilin levels in the aqueous humor and trabecular meshwork of Tg-MYOC(Y437H) mice.Tg-MYOC(Y437H) mice developed elevated IOP at 3 months of age when compared with wild-type (WT) littermates (n = 24; P < 0.0001). Topical PBA did not alter IOP in WT mice. However, it significantly reduced elevated IOP in Tg-MYOC(Y437H) mice to the level of WT mice. Topical PBA-treated Tg-MYOC(Y437H) mice also preserved PERG amplitudes compared with vehicle-treated Tg-MYOC(Y437H) mice. No structural abnormalities were observed in the anterior chamber of PBA-treated WT and Tg-MYOC(Y437H) mice. Analysis of the myocilin in the aqueous humor and TM revealed that PBA significantly improved the secretion of myocilin and reduced myocilin accumulation as well as endoplasmic reticulum (ER) stress in the TM of Tg-MYOC(Y437H) mice. Furthermore, topical PBA reduced IOP elevated by induction of ER stress via tunicamycin injections in WT mice.Topical ocular PBA reduces glaucomatous phenotypes in Tg-MYOC(Y437H) mice, most likely by reducing myocilin accumulation and ER stress in the TM. Topical ocular PBA could become a novel treatment for POAG patients with myocilin mutations.

Map & Directions

219 3Rd St Beaver, PA 15009
View Directions In Google Maps

Nearby Doctors

1311 3Rd St
Beaver, PA 15009
724 742-2144
1000 Dutch Ridge Rd
Beaver, PA 15009
724 737-7616
250 College Ave
Beaver, PA 15009
724 744-4070
1000 Dutch Ridge Rd
Beaver, PA 15009
724 160-0829
5230 Tuscarawas Rd
Beaver, PA 15009
172 495-5650
1000 Dutch Ridge Rd
Beaver, PA 15009
724 734-4567
1000 Dutch Ridge Rd
Beaver, PA 15009
724 733-3401
1030 Beaver Hollow Road
Beaver, PA 15009
724 700-0410
1000 Dutch Ridge Road
Beaver, PA 15009
724 287-7000