Dr. William  Nguyen  Dds image

Dr. William Nguyen Dds

505 Claremont Parkway
Bronx NY 10457
718 993-3600
Medical School: Other - Unknown
Accepts Medicare: No
Participates In eRX: No
Participates In PQRS: No
Participates In EHR: No
License #: 0517481
NPI: 1053431379
Taxonomy Codes:

Request Appointment Information

Awards & Recognitions

About Us

Practice Philosophy


Medical Malpractice Cases

None Found

Medical Board Sanctions

None Found


None Found


The Proinflammatory Cytokine Interleukin 18 Regulates Feeding by Acting on the Bed Nucleus of the Stria Terminalis. - The Journal of neuroscience : the official journal of the Society for Neuroscience
The proinflammatory cytokine IL-18 has central anorexigenic effects and was proposed to contribute to loss of appetite observed during sickness. Here we tested in the mouse the hypothesis that IL-18 can decrease food intake by acting on neurons of the bed nucleus of the stria terminalis (BST), a component of extended amygdala recently shown to influence feeding via its projections to the lateral hypothalamus (LH). We found that both subunits of the heterodimeric IL-18 receptor are highly expressed in the BST and that local injection of recombinant IL-18 (50 ng/ml) significantly reduced c-fos activation and food intake for at least 6 h. Electrophysiological experiments performed in BST brain slices demonstrated that IL-18 strongly reduces the excitatory input on BST neurons through a presynaptic mechanism. The effects of IL-18 are cell-specific and were observed in Type III but not in Type I/II neurons. Interestingly, IL-18-sensitve Type III neurons were recorded in the juxtacapsular BST, a region that contains BST-LH projecting neurons. Reducing the excitatory input on Type III GABAergic neurons, IL-18 can increase the firing of glutamatergic LH neurons through a disinhibitory mechanism. Imbalance between excitatory and inhibitory activity in the LH can induce changes in food intake. Effects of IL-18 were mediated by the IL-18R because they were absent in neurons from animals null for IL-18Rα (Il18ra(-/-)), which lack functional IL-18 receptors. In conclusion, our data show that IL-18 may inhibit feeding by inhibiting the activity of BST Type III GABAergic neurons.Loss of appetite during sickness is a common and often debilitating phenomenon. Although proinflammatory cytokines are recognized as mediators of these anorexigenic effects, their mechanism and sites of action remain poorly understood. Here we show that interleukin 18, an anorexigenic cytokine, can act on neurons of the bed nucleus of the stria terminalis to reduce food intake via the IL-18 receptor. The findings identify a site and a mode of action that indicate targets for the treatment of cachexia or other eating disorders.Copyright © 2016 the authors 0270-6474/16/365170-11$15.00/0.
Cesium Lead Halide Perovskites with Improved Stability for Tandem Solar Cells. - The journal of physical chemistry letters
A semiconductor that can be processed on a large scale with a bandgap around 1.8 eV could enable the manufacture of highly efficient low cost double-junction solar cells on crystalline Si. Solution-processable organic-inorganic halide perovskites have recently generated considerable excitement as absorbers in single-junction solar cells, and though it is possible to tune the bandgap of (CH3NH3)Pb(BrxI1-x)3 between 2.3 and 1.6 eV by controlling the halide concentration, optical instability due to photoinduced phase segregation limits the voltage that can be extracted from compositions with appropriate bandgaps for tandem applications. Moreover, these materials have been shown to suffer from thermal degradation at temperatures within the processing and operational window. By replacing the volatile methylammonium cation with cesium, it is possible to synthesize a mixed halide absorber material with improved optical and thermal stability, a stabilized photoconversion efficiency of 6.5%, and a bandgap of 1.9 eV.
A chemical proteomic atlas of brain serine hydrolases identifies cell type-specific pathways regulating neuroinflammation. - eLife
Metabolic specialization among major brain cell types is central to nervous system function and determined in large part by the cellular distribution of enzymes. Serine hydrolases are a diverse enzyme class that plays fundamental roles in CNS metabolism and signaling. Here, we perform an activity-based proteomic analysis of primary mouse neurons, astrocytes, and microglia to furnish a global portrait of the cellular anatomy of serine hydrolases in the brain. We uncover compelling evidence for the cellular compartmentalization of key chemical transmission pathways, including the functional segregation of endocannabinoid (eCB) biosynthetic enzymes diacylglycerol lipase-alpha (DAGLα) and -beta (DAGLβ) to neurons and microglia, respectively. Disruption of DAGLβ perturbed eCB-eicosanoid crosstalk specifically in microglia and suppressed neuroinflammatory events in vivo independently of broader effects on eCB content. Mapping the cellular distribution of metabolic enzymes thus identifies pathways for regulating specialized inflammatory responses in the brain while avoiding global alterations in CNS function.
Rapid and profound rewiring of brain lipid signaling networks by acute diacylglycerol lipase inhibition. - Proceedings of the National Academy of Sciences of the United States of America
Diacylglycerol lipases (DAGLα and DAGLβ) convert diacylglycerol to the endocannabinoid 2-arachidonoylglycerol. Our understanding of DAGL function has been hindered by a lack of chemical probes that can perturb these enzymes in vivo. Here, we report a set of centrally active DAGL inhibitors and a structurally related control probe and their use, in combination with chemical proteomics and lipidomics, to determine the impact of acute DAGL blockade on brain lipid networks in mice. Within 2 h, DAGL inhibition produced a striking reorganization of bioactive lipids, including elevations in DAGs and reductions in endocannabinoids and eicosanoids. We also found that DAGLα is a short half-life protein, and the inactivation of DAGLs disrupts cannabinoid receptor-dependent synaptic plasticity and impairs neuroinflammatory responses, including lipopolysaccharide-induced anapyrexia. These findings illuminate the highly interconnected and dynamic nature of lipid signaling pathways in the brain and the central role that DAGL enzymes play in regulating this network.
Monoacylglycerol Lipase Regulates Fever Response. - PloS one
Cyclooxygenase inhibitors such as ibuprofen have been used for decades to control fever through reducing the levels of the pyrogenic lipid transmitter prostaglandin E2 (PGE2). Historically, phospholipases have been considered to be the primary generator of the arachidonic acid (AA) precursor pool for generating PGE2 and other eicosanoids. However, recent studies have demonstrated that monoacyglycerol lipase (MAGL), through hydrolysis of the endocannabinoid 2-arachidonoylglycerol, provides a major source of AA for PGE2 synthesis in the mammalian brain under basal and neuroinflammatory states. We show here that either genetic or pharmacological ablation of MAGL leads to significantly reduced fever responses in both centrally or peripherally-administered lipopolysaccharide or interleukin-1β-induced fever models in mice. We also show that a cannabinoid CB1 receptor antagonist does not attenuate these anti-pyrogenic effects of MAGL inhibitors. Thus, much like traditional nonsteroidal anti-inflammatory drugs, MAGL inhibitors can control fever, but appear to do so through restricted control over prostaglandin production in the nervous system.
Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro(TFSI)â‚‚ in perovskite and dye-sensitized solar cells. - Journal of the American Chemical Society
2,2',7,7'-Tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD), the prevalent organic hole transport material used in solid-state dye-sensitized solar cells and perovskite-absorber solar cells, relies on an uncontrolled oxidative process to reach appreciable conductivity. This work presents the use of a dicationic salt of spiro-OMeTAD, named spiro(TFSI)2, as a facile means of controllably increasing the conductivity of spiro-OMeTAD up to 10(-3) S cm(-1) without relying on oxidation in air. Spiro(TFSI)2 enables the first demonstration of solid-state dye-sensitized solar cells fabricated and operated with the complete exclusion of oxygen after deposition of the sensitizer with higher and more reproducible device performance. Perovskite-absorber solar cells fabricated with spiro(TFSI)2 show improved operating stability in an inert atmosphere. Gaining control of the conductivity of the HTM in both dye-sensitized and perovskite-absorber solar cells in an inert atmosphere using spiro(TFSI)2 is an important step toward the commercialization of these technologies.
AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. - The Journal of clinical investigation
Diabetic microvascular complications have been considered to be mediated by a glucose-driven increase in mitochondrial superoxide anion production. Here, we report that superoxide production was reduced in the kidneys of a steptozotocin-induced mouse model of type 1 diabetes, as assessed by in vivo real-time transcutaneous fluorescence, confocal microscopy, and electron paramagnetic resonance analysis. Reduction of mitochondrial biogenesis and phosphorylation of pyruvate dehydrogenase (PDH) were observed in kidneys from diabetic mice. These observations were consistent with an overall reduction of mitochondrial glucose oxidation. Activity of AMPK, the major energy-sensing enzyme, was reduced in kidneys from both diabetic mice and humans. Mitochondrial biogenesis, PDH activity, and mitochondrial complex activity were rescued by treatment with the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR). AICAR treatment induced superoxide production and was linked with glomerular matrix and albuminuria reduction in the diabetic kidney. Furthermore, diabetic heterozygous superoxide dismutase 2 (Sod2(+/-)) mice had no evidence of increased renal disease, and Ampka2(-/-) mice had increased albuminuria that was not reduced with AICAR treatment. Reduction of mitochondrial superoxide production with rotenone was sufficient to reduce AMPK phosphorylation in mouse kidneys. Taken together, these results demonstrate that diabetic kidneys have reduced superoxide and mitochondrial biogenesis and activation of AMPK enhances superoxide production and mitochondrial function while reducing disease activity.
Novel Kv1.3 blockers for immunosuppression: WO2012155199. - Expert opinion on therapeutic patents
A recent patent application from Bionomics/Merck Serono describes novel compounds as blockers of the voltage-gated Kv1.3 ion channel. The blockade of this channel shows great promise as a new therapeutic target for the treatment of autoimmune disorders such as multiple sclerosis, psoriasis, diabetes and rheumatoid arthritis. The generic claim of this patent refers to a new chemotype of Kv1.3 blockers based on an amide core with potent IC50's which are potentially within the nanomolar range. This article briefly reviews the chemistry and biology found in the patent and compares it with previous discoveries in the field.
Structure-activity relationship exploration of Kv1.3 blockers based on diphenoxylate. - Bioorganic & medicinal chemistry letters
Diphenoxylate, a well-known opioid agonist and anti-diarrhoeal agent, was recently found to block Kv1.3 potassium channels, which have been proposed as potential therapeutic targets for a range of autoimmune diseases. The molecular basis for this Kv1.3 blockade was assessed by the selective removal of functional groups from the structure of diphenoxylate as well as a number of other structural variations. Removal of the nitrile functional group and replacement of the C-4 piperidinyl substituents resulted in several compounds with submicromolar IC(50) values.Copyright © 2012 Elsevier Ltd. All rights reserved.
The importance of dye chemistry and TiCl4 surface treatment in the behavior of Al2O3 recombination barrier layers deposited by atomic layer deposition in solid-state dye-sensitized solar cells. - Physical chemistry chemical physics : PCCP
Atomic layer deposition (ALD) was used to fabricate Al(2)O(3) recombination barriers in solid-state dye-sensitized solar cells (ss-DSSCs) employing an organic hole transport material (HTM) for the first time. Al(2)O(3) recombination barriers of varying thickness were incorporated into efficient ss-DSSCs utilizing the Z907 dye adsorbed onto a 2 μm-thick nanoporous TiO(2) active layer and the HTM spiro-OMeTAD. The impact of Al(2)O(3) barriers was also studied in devices employing different dyes, with increased active layer thicknesses, and with substrates that did not undergo the TiCl(4) surface treatment. In all instances, electron lifetimes (as determined by transient photovoltage measurements) increased and dark current was suppressed after Al(2)O(3) deposition. However, only when the TiCl(4) treatment was eliminated did device efficiency increase; in all other instances efficiency decreased due to a drop in short-circuit current. These results are attributed in the former case to the similar effects of Al(2)O(3) ALD and the TiCl(4) surface treatment whereas the insulating properties of Al(2)O(3) hinder charge injection and lead to current loss in TiCl(4)-treated devices. The impact of Al(2)O(3) barrier layers was unaffected by doubling the active layer thickness or using an alternative ruthenium dye, but a metal-free donor-π-acceptor dye exhibited a much smaller decrease in current due to its higher excited state energy. We develop a model employing prior research on Al(2)O(3) growth and dye kinetics that successfully predicts the reduction in device current as a function of ALD cycles and is extendable to different dye-barrier systems.

Map & Directions

505 Claremont Parkway Bronx, NY 10457
View Directions In Google Maps

Nearby Doctors

1650 Grand Concourse
Bronx, NY 10457
718 185-5300
4422 3Rd Ave
Bronx, NY 10457
718 606-6159
4422 3Rd Ave
Bronx, NY 10457
718 609-9000
1650 Grand Concourse
Bronx, NY 10457
718 601-1234
1650 Grand Concourse Fl 2 Bronx Lebanon Hosp / Acn Medical Clinic
Bronx, NY 10457
718 185-5060
4422 3Rd Ave
Bronx, NY 10457
718 609-9000
4422 3Rd Ave
Bronx, NY 10457
718 609-9000
1826 Arthur Ave
Bronx, NY 10457
718 188-8750
1770 Grand Concourse 2F
Bronx, NY 10457
718 018-8110
4422 3Rd Ave
Bronx, NY 10457
718 606-6103